Your browser doesn't support javascript.
loading
Sorption of diethyl phthalate and cadmium by pig carcass and green waste-derived biochars under single and binary systems.
Chen, Hanbo; Qin, Peng; Yang, Xing; Bhatnagar, Amit; Shaheen, Sabry M; Rinklebe, Jörg; Wu, Fengchang; Xu, Song; Che, Lei; Wang, Hailong.
Afiliação
  • Chen H; Agronomy College, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China; Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China.
  • Qin P; Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejia
  • Yang X; Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Ma
  • Bhatnagar A; Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland.
  • Shaheen SM; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and
  • Rinklebe J; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; University of Sejong, Department of Environment, Energy and Geoinfo
  • Wu F; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
  • Xu S; Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China.
  • Che L; School of Engineering, Huzhou University, Huzhou, Zhejiang, 313000, China.
  • Wang H; Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejia
Environ Res ; 193: 110594, 2021 02.
Article em En | MEDLINE | ID: mdl-33307079
ABSTRACT
Potentially toxic elements (PTEs) and phthalic acid esters (PAEs) often coexist in contaminated soils. Their co-existence may affect the mutual sorption behavior, and thereby influence their bioavailability and fate in soils. To our best knowledge, the impacts of plant-and animal-derived biochar on the competitive sorption-desorption of PTEs and PAEs in soils with different organic carbon content have not been studied up to date. Therefore, in this study, batch sorption-desorption experiments were conducted to investigate the influence of biochars derived from pig carcass and Platanus orientalis branches on the mono- and competitive sorption of cadmium (Cd2+) and diethyl phthalate (DEP) in soils with high (HS) and low (LS) organic carbon content. The DEP sorption was well described by Freundlich isotherm model, while Cd2+ sorption fitted better with the Langmuir isotherm model. Application of both biochars enhanced soil sorption of DEP, which increased as the application doses increased. The HS showed a stronger affinity to both DEP and Cd2+ than the LS. In the LS, the pig carcass biochar (PB) addition was more effective to increase the sorption capacity of Cd2+ and DEP and to reduce their desorption than woody biochar (WB) treatments. Moreover, the co-existing of Cd2+ could reduce the sorption of DEP, especially in the LS. The presence of DEP enhanced Cd2+ sorption in LS treated by both biochars, but the sorption of Cd2+ was suppressed with DEP addition in the PB-amended HS. In conclusion, the soil sorption capacity of DEP and Cd2+ was affected by biochar type, application dose and soil organic carbon content. The reciprocal effect between DEP and Cd2+ was also a crucial factor influencing their sorption/desorption by biochar. Therefore, PB and WB, especially PB, can be used for metal/DEP immobilization due to enhanced sorption. This approach is applicable for future remediation of soils contaminated by PTEs and PAEs.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes do Solo / Cádmio Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Environ Res Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes do Solo / Cádmio Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Environ Res Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China