Your browser doesn't support javascript.
loading
Accurate and efficient detection of gene fusions from RNA sequencing data.
Uhrig, Sebastian; Ellermann, Julia; Walther, Tatjana; Burkhardt, Pauline; Fröhlich, Martina; Hutter, Barbara; Toprak, Umut H; Neumann, Olaf; Stenzinger, Albrecht; Scholl, Claudia; Fröhling, Stefan; Brors, Benedikt.
Afiliação
  • Uhrig S; Division of Applied Bioinformatics, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) Heidelberg, 69120 Heidelberg, Germany.
  • Ellermann J; Computational Oncology Group, Molecular Diagnostics Program at the NCT and DKFZ, 69120 Heidelberg, Germany.
  • Walther T; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.
  • Burkhardt P; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany.
  • Fröhlich M; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany.
  • Hutter B; Division of Translational Medical Oncology, NCT Heidelberg and DKFZ, 69120 Heidelberg, Germany.
  • Toprak UH; Division of Translational Medical Oncology, NCT Heidelberg and DKFZ, 69120 Heidelberg, Germany.
  • Neumann O; Division of Applied Bioinformatics, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) Heidelberg, 69120 Heidelberg, Germany.
  • Stenzinger A; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.
  • Scholl C; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany.
  • Fröhling S; Division of Applied Bioinformatics, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) Heidelberg, 69120 Heidelberg, Germany.
  • Brors B; Computational Oncology Group, Molecular Diagnostics Program at the NCT and DKFZ, 69120 Heidelberg, Germany.
Genome Res ; 31(3): 448-460, 2021 03.
Article em En | MEDLINE | ID: mdl-33441414
The identification of gene fusions from RNA sequencing data is a routine task in cancer research and precision oncology. However, despite the availability of many computational tools, fusion detection remains challenging. Existing methods suffer from poor prediction accuracy and are computationally demanding. We developed Arriba, a novel fusion detection algorithm with high sensitivity and short runtime. When applied to a large collection of published pancreatic cancer samples (n = 803), Arriba identified a variety of driver fusions, many of which affected druggable proteins, including ALK, BRAF, FGFR2, NRG1, NTRK1, NTRK3, RET, and ROS1. The fusions were significantly associated with KRAS wild-type tumors and involved proteins stimulating the MAPK signaling pathway, suggesting that they substitute for activating mutations in KRAS In addition, we confirmed the transforming potential of two novel fusions, RRBP1-RAF1 and RASGRP1-ATP1A1, in cellular assays. These results show Arriba's utility in both basic cancer research and clinical translation.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Pancreáticas / RNA / Proteínas de Fusão Oncogênica / Análise de Sequência de RNA / Fusão Gênica Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Revista: Genome Res Assunto da revista: BIOLOGIA MOLECULAR / GENETICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Pancreáticas / RNA / Proteínas de Fusão Oncogênica / Análise de Sequência de RNA / Fusão Gênica Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Revista: Genome Res Assunto da revista: BIOLOGIA MOLECULAR / GENETICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Alemanha