Your browser doesn't support javascript.
loading
How to improve infectious disease prediction by integrating environmental data: an application of a novel ensemble analysis strategy to predict HFMD.
Tao, Junwen; Ma, Yue; Zhuang, Xuefei; Lv, Qiang; Liu, Yaqiong; Zhang, Tao; Yin, Fei.
Afiliação
  • Tao J; West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
  • Ma Y; West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
  • Zhuang X; West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
  • Lv Q; Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan, People's Republic of China.
  • Liu Y; Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan, People's Republic of China.
  • Zhang T; West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
  • Yin F; West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
Epidemiol Infect ; 149: e34, 2021 01 15.
Article em En | MEDLINE | ID: mdl-33446283
This study proposed a novel ensemble analysis strategy to improve hand, foot and mouth disease (HFMD) prediction by integrating environmental data. The approach began by establishing a vector autoregressive model (VAR). Then, a dynamic Bayesian networks (DBN) model was used for variable selection of environmental factors. Finally, a VAR model with constraints (CVAR) was established for predicting the incidence of HFMD in Chengdu city from 2011 to 2017. DBN showed that temperature was related to HFMD at lags 1 and 2. Humidity, wind speed, sunshine, PM10, SO2 and NO2 were related to HFMD at lag 2. Compared with the autoregressive integrated moving average model with external variables (ARIMAX), the CVAR model had a higher coefficient of determination (R2, average difference: + 2.11%; t = 6.2051, P = 0.0003 < 0.05), a lower root mean-squared error (-24.88%; t = -5.2898, P = 0.0007 < 0.05) and a lower mean absolute percentage error (-16.69%; t = -4.3647, P = 0.0024 < 0.05). The accuracy of predicting the time-series shape was 88.16% for the CVAR model and 86.41% for ARIMAX. The CVAR model performed better in terms of variable selection, model interpretation and prediction. Therefore, it could be used by health authorities to identify potential HFMD outbreaks and develop disease control measures.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Controle de Doenças Transmissíveis / Monitoramento Ambiental / Doença de Mão, Pé e Boca / Conceitos Meteorológicos Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans País/Região como assunto: Asia Idioma: En Revista: Epidemiol Infect Assunto da revista: DOENCAS TRANSMISSIVEIS / EPIDEMIOLOGIA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Controle de Doenças Transmissíveis / Monitoramento Ambiental / Doença de Mão, Pé e Boca / Conceitos Meteorológicos Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans País/Região como assunto: Asia Idioma: En Revista: Epidemiol Infect Assunto da revista: DOENCAS TRANSMISSIVEIS / EPIDEMIOLOGIA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China