Your browser doesn't support javascript.
loading
3D-Printable Fluoropolymer Gas Diffusion Layers for CO2 Electroreduction.
Wicks, Joshua; Jue, Melinda L; Beck, Victor A; Oakdale, James S; Dudukovic, Nikola A; Clemens, Auston L; Liang, Siwei; Ellis, Megan E; Lee, Geonhui; Baker, Sarah E; Duoss, Eric B; Sargent, Edward H.
Afiliação
  • Wicks J; Department of Electrical and Computer Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
  • Jue ML; Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA.
  • Beck VA; Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA.
  • Oakdale JS; Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA.
  • Dudukovic NA; Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA.
  • Clemens AL; Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA.
  • Liang S; Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA.
  • Ellis ME; Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA.
  • Lee G; Department of Electrical and Computer Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
  • Baker SE; Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA.
  • Duoss EB; Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA.
  • Sargent EH; Department of Electrical and Computer Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
Adv Mater ; 33(7): e2003855, 2021 Feb.
Article em En | MEDLINE | ID: mdl-33448061
ABSTRACT
The electrosynthesis of value-added multicarbon products from CO2 is a promising strategy to shift chemical production away from fossil fuels. Particularly important is the rational design of gas diffusion electrode (GDE) assemblies to react selectively, at scale, and at high rates. However, the understanding of the gas diffusion layer (GDL) in these assemblies is limited for the CO2 reduction reaction (CO2 RR) particularly important, but incompletely understood, is how the GDL modulates product distributions of catalysts operating in high current density regimes > 300 mA cm-2 . Here, 3D-printable fluoropolymer GDLs with tunable microporosity and structure are reported and probe the effects of permeance, microstructural porosity, macrostructure, and surface morphology. Under a given choice of applied electrochemical potential and electrolyte, a 100× increase in the C2 H4CO ratio due to GDL surface morphology design over a homogeneously porous equivalent and a 1.8× increase in the C2 H4 partial current density due to a pyramidal macrostructure are observed. These findings offer routes to improve CO2 RR GDEs as a platform for 3D catalyst design.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Mater Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Canadá

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Mater Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Canadá