Your browser doesn't support javascript.
loading
Optimization, fabrication, and characterization of four electrode-based sensors for blood impedance measurement.
Pradhan, Rangadhar; Raisa, Sanjana Afrin; Kumar, Pramod; Kalkal, Ashish; Kumar, Narendra; Packirisamy, Gopinath; Manhas, Sanjeev.
Afiliação
  • Pradhan R; Center for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India. rangadhar@gmail.com.
  • Raisa SA; Department of Electronics & Communication Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
  • Kumar P; Department of Electronics & Communication Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
  • Kalkal A; Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
  • Kumar N; Department of Electronics & Communication Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
  • Packirisamy G; Center for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
  • Manhas S; Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
Biomed Microdevices ; 23(1): 9, 2021 01 15.
Article em En | MEDLINE | ID: mdl-33449205
In this work, an optimized, non-invasive four electrode-based impedimetric sensors have been designed, fabricated, and characterized for measuring the impedance of a biological cell. The impedimetric sensors having four mono-polar electrodes were fabricated utilizing the photolithography technique with gold as the electrode material. Furthermore, the impedance of the electrolyte/electrode interface was simulated by optimizing different parameters, including applied voltage, PBS thickness, and diameter, using COMSOL Multiphysics software for a frequency range of 100 Hz to 1 MHz. Next, the impedance of the fabricated device was measured experimentally using the electrochemical impedance spectroscopy (EIS) technique. Then, the COMSOL data was equated with the impedance obtained from the fabricated devices to realize the feasibility and error percentage (RSE < 5%) of the sensor. The equivalent circuit model for the measured impedance data of PBS was obtained utilizing the ZsimpWin software. Besides, the mathematical relations between the impedance, phase angle and the area of the electrode were interpreted for the fabricated impedimetric sensors. Later on, a real blood sample was also characterized to demonstrate the feasibility and the validity of the proposed technique and the fabricated devices in cell diagnosis.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Espectroscopia Dielétrica / Ouro Idioma: En Revista: Biomed Microdevices Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Índia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Espectroscopia Dielétrica / Ouro Idioma: En Revista: Biomed Microdevices Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Índia