Your browser doesn't support javascript.
loading
Cryptic prokaryotic promoters explain instability of recombinant neuronal sodium channels in bacteria.
DeKeyser, Jean-Marc; Thompson, Christopher H; George, Alfred L.
Afiliação
  • DeKeyser JM; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
  • Thompson CH; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
  • George AL; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA. Electronic address: al.george@northwestern.edu.
J Biol Chem ; 296: 100298, 2021.
Article em En | MEDLINE | ID: mdl-33460646
ABSTRACT
Mutations in genes encoding the human-brain-expressed voltage-gated sodium (NaV) channels NaV1.1, NaV1.2, and NaV1.6 are associated with a variety of human diseases including epilepsy, autism spectrum disorder, familial migraine, and other neurodevelopmental disorders. A major obstacle hindering investigations of the functional consequences of brain NaV channel mutations is an unexplained instability of the corresponding recombinant complementary DNA (cDNA) when propagated in commonly used bacterial strains manifested by high spontaneous rates of mutation. Here, using a combination of in silico analysis, random and site-directed mutagenesis, we investigated the cause for instability of human NaV1.1 cDNA. We identified nucleotide sequences within the NaV1.1 coding region that resemble prokaryotic promoter-like elements, which are presumed to drive transcription of translationally toxic mRNAs in bacteria as the cause of the instability. We further demonstrated that mutations disrupting these elements mitigate the instability. Extending these observations, we generated full-length human NaV1.1, NaV1.2, and NaV1.6 plasmids using one or two introns that interrupt the latent reading frames along with a minimum number of silent nucleotide changes that achieved stable propagation in bacteria. Expression of the stabilized sequences in cultured mammalian cells resulted in functional NaV channels with properties that matched their parental constructs. Our findings explain a widely observed instability of recombinant neuronal human NaV channels, and we describe re-engineered plasmids that attenuate this problem.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Engenharia de Proteínas / Regiões Promotoras Genéticas / Escherichia coli / Canal de Sódio Disparado por Voltagem NAV1.1 / Canal de Sódio Disparado por Voltagem NAV1.2 / Canal de Sódio Disparado por Voltagem NAV1.6 Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: J Biol Chem Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Engenharia de Proteínas / Regiões Promotoras Genéticas / Escherichia coli / Canal de Sódio Disparado por Voltagem NAV1.1 / Canal de Sódio Disparado por Voltagem NAV1.2 / Canal de Sódio Disparado por Voltagem NAV1.6 Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: J Biol Chem Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos