Your browser doesn't support javascript.
loading
Role of CXCL16 in BLM-induced epithelial-mesenchymal transition in human A549 cells.
Ma, Zhenzhen; Ma, Chunyan; Zhang, Qingfeng; Bai, Yang; Mu, Kun; Liu, Xiangyuan; Yang, Qingrui.
Afiliação
  • Ma Z; Department of Rheumatology and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.
  • Ma C; Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
  • Zhang Q; Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, China.
  • Bai Y; Department of Rheumatology and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.
  • Mu K; Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
  • Liu X; Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
  • Yang Q; Department of Rheumatology and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.
Respir Res ; 22(1): 42, 2021 Feb 06.
Article em En | MEDLINE | ID: mdl-33549109
Alveolar epithelial cells play an essential role in the initiation and progression of pulmonary fibrosis, and the occurrence of epithelial-mesenchymal transition (EMT) may be the early events of pulmonary fibrosis. Recent studies have shown chemokines are involved in the complex process of EMT, and CXC chemokine ligand 16 (CXCL16) is also associated with many fibrosis-related diseases. However, whether CXCL16 is dysregulated in alveolar epithelial cells and the role of CXCL16 in modulating EMT in pulmonary fibrosis has not been reported. In this study, we found that CXCL16 and its receptor C-X-C motif chemokine receptor 6 (CXCR6) were upregulated in bleomycin induced EMT in human alveolar type II-like epithelial A549 cells. Synergistic effect of CXCL16 and bleomycin in promoting EMT occurrence, extracellular matrix (ECM) excretion, as well as the pro-inflammatory and pro-fibrotic cytokines productions in A549 cells were observed, and those biological functions were impaired by CXCL16 siRNA. We further confirmed that CXCL16 regulated EMT in A549 cells via the TGF-ß1/Smad3 pathways. These results indicated that CXCL16 could promote pulmonary fibrosis by promoting the process of EMT via the TGF-ß1/Smad3 signaling pathway.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bleomicina / Transição Epitelial-Mesenquimal / Quimiocina CXCL16 Limite: Humans Idioma: En Revista: Respir Res Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bleomicina / Transição Epitelial-Mesenquimal / Quimiocina CXCL16 Limite: Humans Idioma: En Revista: Respir Res Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China