Your browser doesn't support javascript.
loading
Retinol binding protein 1 affects Xenopus anterior neural development via all-trans retinoic acid signaling.
Flach, Hannah; Basten, Thomas; Schreiner, Corinna; Dietmann, Petra; Greco, Sara; Nies, Lea; Roßmanith, Nathalie; Walter, Svenja; Kühl, Michael; Kühl, Susanne J.
Afiliação
  • Flach H; Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany.
  • Basten T; Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany.
  • Schreiner C; Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany.
  • Dietmann P; Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany.
  • Greco S; Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany.
  • Nies L; Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany.
  • Roßmanith N; Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany.
  • Walter S; Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany.
  • Kühl M; Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany.
  • Kühl SJ; Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany.
Dev Dyn ; 250(8): 1096-1112, 2021 08.
Article em En | MEDLINE | ID: mdl-33570783
ABSTRACT

BACKGROUND:

Retinol binding protein 1 (Rbp1) acts as an intracellular regulator of vitamin A metabolism and retinoid transport. In mice, Rbp1 deficiency decreases the capacity of hepatic stellate cells to take up all-trans retinol and sustain retinyl ester stores. Furthermore, Rbp1 is crucial for visual capacity. Although the function of Rbp1 has been studied in the mature eye, its role during early anterior neural development has not yet been investigated in detail.

RESULTS:

We showed that rbp1 is expressed in the eye, anterior neural crest cells (NCCs) and prosencephalon of the South African clawed frog Xenopus laevis. Rbp1 knockdown led to defects in eye formation, including microphthalmia and disorganized retinal lamination, and to disturbed induction and differentiation of the eye field, as shown by decreased rax and pax6 expression. Furthermore, it resulted in reduced rax expression in the prosencephalon and affected cranial cartilage. Rbp1 inhibition also interfered with neural crest induction and migration, as shown by twist and slug. Moreover, it led to a significant reduction of the all-trans retinoic acid target gene pitx2 in NCC-derived periocular mesenchyme. The Rbp1 knockdown phenotypes were rescued by pitx2 RNA co-injection.

CONCLUSION:

Rbp1 is crucial for the development of the anterior neural tissue.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tretinoína / Transdução de Sinais / Prosencéfalo / Desenvolvimento Embrionário / Proteínas Celulares de Ligação ao Retinol / Crista Neural Limite: Animals Idioma: En Revista: Dev Dyn Assunto da revista: ANATOMIA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tretinoína / Transdução de Sinais / Prosencéfalo / Desenvolvimento Embrionário / Proteínas Celulares de Ligação ao Retinol / Crista Neural Limite: Animals Idioma: En Revista: Dev Dyn Assunto da revista: ANATOMIA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Alemanha