Your browser doesn't support javascript.
loading
Nonlinear convergence boosts information coding in circuits with parallel outputs.
Gutierrez, Gabrielle J; Rieke, Fred; Shea-Brown, Eric T.
Afiliação
  • Gutierrez GJ; Department of Applied Mathematics, University of Washington, Seattle, WA 98195; ellag9@uw.edu.
  • Rieke F; Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195.
  • Shea-Brown ET; Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Article em En | MEDLINE | ID: mdl-33593894
ABSTRACT
Neural circuits are structured with layers of converging and diverging connectivity and selectivity-inducing nonlinearities at neurons and synapses. These components have the potential to hamper an accurate encoding of the circuit inputs. Past computational studies have optimized the nonlinearities of single neurons, or connection weights in networks, to maximize encoded information, but have not grappled with the simultaneous impact of convergent circuit structure and nonlinear response functions for efficient coding. Our approach is to compare model circuits with different combinations of convergence, divergence, and nonlinear neurons to discover how interactions between these components affect coding efficiency. We find that a convergent circuit with divergent parallel pathways can encode more information with nonlinear subunits than with linear subunits, despite the compressive loss induced by the convergence and the nonlinearities when considered separately.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Retina / Sinapses / Vias Visuais / Dinâmica não Linear / Transmissão Sináptica / Modelos Neurológicos Limite: Humans Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Retina / Sinapses / Vias Visuais / Dinâmica não Linear / Transmissão Sináptica / Modelos Neurológicos Limite: Humans Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2021 Tipo de documento: Article