Your browser doesn't support javascript.
loading
Mass Generation, Neuron Labeling, and 3D Imaging of Minibrains.
Govindan, Subashika; Batti, Laura; Osterop, Samira F; Stoppini, Luc; Roux, Adrien.
Afiliação
  • Govindan S; Tissue Engineering Laboratory, Haute école du paysage, d'ingénierie et d'architecture de Genève, Haute école spécialisée de Suisse occidentale (HEPIA HES-SO), University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland.
  • Batti L; ARIMA Lifesciences PVT Ltd., Chennai, India.
  • Osterop SF; Wyss Center for Bio and Neuroengineering, Geneva, Switzerland.
  • Stoppini L; Wyss Center for Bio and Neuroengineering, Geneva, Switzerland.
  • Roux A; Tissue Engineering Laboratory, Haute école du paysage, d'ingénierie et d'architecture de Genève, Haute école spécialisée de Suisse occidentale (HEPIA HES-SO), University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland.
Front Bioeng Biotechnol ; 8: 582650, 2020.
Article em En | MEDLINE | ID: mdl-33598450
ABSTRACT
Minibrain is a 3D brain in vitro spheroid model, composed of a mixed population of neurons and glial cells, generated from human iPSC derived neural stem cells. Despite the advances in human 3D in vitro models such as aggregates, spheroids and organoids, there is a lack of labeling and imaging methodologies to characterize these models. In this study, we present a step-by-step methodology to generate human minibrain nurseries and novel strategies to subsequently label projection neurons, perform immunohistochemistry and 3D imaging of the minibrains at large multiplexable scales. To visualize projection neurons, we adapt viral transduction and to visualize the organization of cell types we implement immunohistochemistry. To facilitate 3D imaging of minibrains, we present here pipelines and accessories for one step mounting and clearing suitable for confocal microscopy. The pipelines are specifically designed in such a way that the assays can be multiplexed with ease for large-scale screenings using minibrains and other organoid models. Using the pipeline, we present (i) dendrite morphometric properties obtained from 3D neuron morphology reconstructions, (ii) diversity in neuron morphology, and (iii) quantified distribution of progenitors and POU3F2 positive neurons in human minibrains.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Front Bioeng Biotechnol Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Front Bioeng Biotechnol Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Suíça