Your browser doesn't support javascript.
loading
Advances in Materials and Applications of Inorganic Electrides.
Hosono, Hideo; Kitano, Masaaki.
Afiliação
  • Hosono H; Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.
  • Kitano M; International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan.
Chem Rev ; 121(5): 3121-3185, 2021 Mar 10.
Article em En | MEDLINE | ID: mdl-33606511
Electrides are materials in which electrons serve as anions. Here, the concept of inorganic electrides is extended in several respects: from ionic crystals to intermetallic compounds in host materials, from crystalline to amorphous solids, and from 0-dimensional to 1- and 2-dimensional materials in electron-confined spaces. In particular, 2D electrides, in which anionic electrons are sandwiched by cationic slabs, can form a bulk crystal of a 2-dimensional electron gas, thus exhibiting a large electron mobility and providing a platform for topological materials. Exploration of new electrides by computation and high pressure has advanced, revealing that an electride is a stable equilibrium phase of many elements and compounds under high pressure. This review describes the history and current status of electride research and next summarizes the chemical application of electrides and relevant materials. An emphasis is placed on catalysts for ammonia synthesis from N2 and H2 at mild conditions. This subject is accelerated by a demand for on-site ammonia synthesis using hydrogen produced by renewable energy sources. A wide applicability of electride for chemical reactions such selective hydrogenation and carbon-carbon coupling is shown by extending the concept of electrides. Finally, a view for the relationship between electrides and crystallographic voids and current issues are described.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Chem Rev Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Chem Rev Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Japão