Your browser doesn't support javascript.
loading
Light modulates the effect of antibiotic norfloxacin on photosynthetic processes of Microcystis aeruginosa.
Zhao, Libin; Xu, Kui; Juneau, Philippe; Huang, Peihuan; Lian, Yingli; Zheng, Xiafei; Zhong, Qiuping; Zhang, Wei; Xiao, Fanshu; Wu, Bo; Yan, Qingyun; He, Zhili.
Afiliação
  • Zhao L; Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China.
  • Xu K; Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China. Electronic address: xukui@mail.sysu.edu.cn.
  • Juneau P; Department of Biological Sciences, GRIL-EcotoQ-TOXEN, Ecotoxicology of Aquatic Microorganisms Laboratory, Université du Québec à Montréal, Succursale Centre-Ville, Montréal, Québec, Canada.
  • Huang P; Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China.
  • Lian Y; Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China.
  • Zheng X; Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China.
  • Zhong Q; Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China.
  • Zhang W; Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China.
  • Xiao F; Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China.
  • Wu B; Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China.
  • Yan Q; Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China.
  • He Z; Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China. Electronic address: hezhili@mail.sysu.edu.cn.
Aquat Toxicol ; 235: 105826, 2021 Jun.
Article em En | MEDLINE | ID: mdl-33862333
ABSTRACT
Norfloxacin is one of the widely used antibiotics, often detected in aquatic ecosystems, and difficultly degraded in the environment. However, how norfloxacin affects the photosynthetic process of freshwater phytoplankton is still largely unknown, especially under varied light conditions. In this study, we investigated photosynthetic mechanisms of Microcystis aeruginosa in responses to antibiotic norfloxacin (0-50 µg/L) for 72 h under low (LL; 50 µmol photons m-2 s-1) and high (HL; 250 µmol photons m-2 s-1) growth light regimes. We found that environmentally related concentrations of norfloxacin inhibited the growth rate and operational quantum yield of photosynthesis system II (PSII) of M. aeruginosa more under HL than under LL, suggesting HL increased the toxicity of norfloxacin to M. aeruginosa. Further analyses showed that norfloxacin deactivated PSII reaction centers under both growth light regimes with increased minimal fluorescence yields only under HL, suggesting that norfloxacin not only damaged reaction centers of PSII, but also inhibited energy transfer among phycobilisomes in M. aeruginosa under HL. However, non-photosynthetic quenching decreased in the studied species by norfloxacin exposure under both growth light regimes, suggesting that excess energy might not be efficiently dissipated as heat. Also, we found that reactive oxygen species (ROS) content increased under norfloxacin treatments with a higher ROS content under HL compared to LL. In addition, HL increased the absorption of norfloxacin by M. aeruginosa, which could partly explain the high sensitivity to norfloxacin of M. aeruginosa under HL. This study firstly reports that light can strongly affect the toxicity of norfloxacin to M. aeruginosa, and has vitally important implications for assessing the toxicity of norfloxacin to aquatic microorganisms.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Norfloxacino / Complexo de Proteína do Fotossistema II / Microcystis / Antibacterianos Idioma: En Revista: Aquat Toxicol Assunto da revista: BIOLOGIA / TOXICOLOGIA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Norfloxacino / Complexo de Proteína do Fotossistema II / Microcystis / Antibacterianos Idioma: En Revista: Aquat Toxicol Assunto da revista: BIOLOGIA / TOXICOLOGIA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China