PLGA Microspheres Containing Hydrophobically Modified Magnesium Hydroxide Particles for Acid Neutralization-Mediated Anti-Inflammation.
Tissue Eng Regen Med
; 18(4): 613-622, 2021 08.
Article
em En
| MEDLINE
| ID: mdl-33877618
BACKGROUND: Poly(lactic-co-glycolic acid) (PLGA) microspheres have been actively used in various pharmaceutical formulations because they can sustain active pharmaceutical ingredient release and are easy to administer into the body using a syringe. However, the acidic byproducts produced by the decomposition of PLGA cause inflammatory reactions in surrounding tissues, limiting biocompatibility. Magnesium hydroxide (MH), an alkaline ceramic, has attracted attention as a potential additive because it has an acid-neutralizing effect. METHODS: To improve the encapsulation efficiency of hydrophilic MH, the MH particles were capped with hydrophobic ricinoleic acid (RA-MH). PLGA microspheres encapsulated with RA-MH particles were manufactured by the O/W method. To assess the in vitro cytotoxicity of the degradation products of PLGA, MH/PLGA, and RA-MH/PLGA microspheres, CCK-8 and Live/Dead assays were performed with NIH-3T3 cells treated with different concentrations of their degradation products. In vitro anti-inflammatory effect of RA-MH/PLGA microspheres was evaluated with quantitative measurement of pro-inflammatory cytokines. RESULTS: The synthesized RA-MH was encapsulated in PLGA microspheres and displayed more than four times higher loading content than pristine MH. The PLGA microspheres encapsulated with RA-MH had an acid-neutralizing effect better than that of the control group. In an in vitro cell experiment, the degradation products obtained from RA-MH/PLGA microspheres exhibited higher biocompatibility than the degradation products obtained from PLGA microspheres. Additionally, the RA-MH/PLGA microsphere group showed an excellent anti-inflammatory effect. CONCLUSION: Our results proved that RA-MH-encapsulated PLGA microspheres showed excellent biocompatibility with an anti-inflammatory effect. This technology can be applied to drug delivery and tissue engineering to treat various incurable diseases in the future.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Ácido Poliglicólico
/
Hidróxido de Magnésio
Limite:
Animals
Idioma:
En
Revista:
Tissue Eng Regen Med
Ano de publicação:
2021
Tipo de documento:
Article