Your browser doesn't support javascript.
loading
Avoiding organelle mutational meltdown across eukaryotes with or without a germline bottleneck.
Edwards, David M; Røyrvik, Ellen C; Chustecki, Joanna M; Giannakis, Konstantinos; Glastad, Robert C; Radzvilavicius, Arunas L; Johnston, Iain G.
Afiliação
  • Edwards DM; School of Life Sciences, University of Warwick, United Kingdom.
  • Røyrvik EC; Department of Clinical Science, University of Bergen, Norway.
  • Chustecki JM; School of Biosciences, University of Birmingham, United Kingdom.
  • Giannakis K; Department of Mathematics, University of Bergen, Norway.
  • Glastad RC; Department of Mathematics, University of Bergen, Norway.
  • Radzvilavicius AL; Department of Mathematics, University of Bergen, Norway.
  • Johnston IG; Department of Mathematics, University of Bergen, Norway.
PLoS Biol ; 19(4): e3001153, 2021 04.
Article em En | MEDLINE | ID: mdl-33891583
ABSTRACT
Mitochondrial DNA (mtDNA) and plastid DNA (ptDNA) encode vital bioenergetic apparatus, and mutations in these organelle DNA (oDNA) molecules can be devastating. In the germline of several animals, a genetic "bottleneck" increases cell-to-cell variance in mtDNA heteroplasmy, allowing purifying selection to act to maintain low proportions of mutant mtDNA. However, most eukaryotes do not sequester a germline early in development, and even the animal bottleneck remains poorly understood. How then do eukaryotic organelles avoid Muller's ratchet-the gradual buildup of deleterious oDNA mutations? Here, we construct a comprehensive and predictive genetic model, quantitatively describing how different mechanisms segregate and decrease oDNA damage across eukaryotes. We apply this comprehensive theory to characterise the animal bottleneck with recent single-cell observations in diverse mouse models. Further, we show that gene conversion is a particularly powerful mechanism to increase beneficial cell-to-cell variance without depleting oDNA copy number, explaining the benefit of observed oDNA recombination in diverse organisms which do not sequester animal-like germlines (for example, sponges, corals, fungi, and plants). Genomic, transcriptomic, and structural datasets across eukaryotes support this mechanism for generating beneficial variance without a germline bottleneck. This framework explains puzzling oDNA differences across taxa, suggesting how Muller's ratchet is avoided in different eukaryotes.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Organelas / Eucariotos / Células Germinativas / Mutação Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: PLoS Biol Assunto da revista: BIOLOGIA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Organelas / Eucariotos / Células Germinativas / Mutação Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: PLoS Biol Assunto da revista: BIOLOGIA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Reino Unido