Your browser doesn't support javascript.
loading
Direct Imaging of Integrated Circuits in CPU with 60 nm Super-Resolution Optical Microscope.
Yang, Guang; Yang, Chi; Chen, Yage; Yu, Boyu; Bi, Yali; Liao, Jiangshan; Li, Haozheng; Wang, Hong; Wang, Yuxi; Liu, Ziyu; Gan, Zongsong; Yuan, Quan; Wang, Yi; Xia, Jinsong; Wang, Ping.
Afiliação
  • Yang G; Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
  • Yang C; MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
  • Chen Y; Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
  • Yu B; MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
  • Bi Y; Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
  • Liao J; MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
  • Li H; Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
  • Wang H; MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
  • Wang Y; Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
  • Liu Z; MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
  • Gan Z; Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
  • Yuan Q; MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
  • Wang Y; Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
  • Xia J; MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
  • Wang P; Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
Nano Lett ; 21(9): 3887-3893, 2021 05 12.
Article em En | MEDLINE | ID: mdl-33904733
ABSTRACT
Far-field super-resolution optical microscopies have achieved incredible success in life science for visualization of vital nanostructures organized in single cells. However, such resolution power has been much less extended to material science for inspection of human-made ultrafine nanostructures, simply because the current super-resolution optical microscopies modalities are rarely applicable to nonfluorescent samples or unlabeled systems. Here, we report an antiphase demodulation pump-probe (DPP) super-resolution microscope for direct optical inspection of integrated circuits (ICs) with a lateral resolution down to 60 nm. Because of the strong pump-probe (PP) signal from copper, we performed label-free super-resolution imaging of multilayered copper interconnects on a small central processing unit (CPU) chip. The label-free super-resolution DPP optical microscopy opens possibilities for easy, fast, and large-scale electronic inspection in the whole pipeline chain for designing and manufacturing ICs.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanoestruturas / Microscopia Limite: Humans Idioma: En Revista: Nano Lett Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanoestruturas / Microscopia Limite: Humans Idioma: En Revista: Nano Lett Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China