Your browser doesn't support javascript.
loading
Electromagnetic Control by Actuating Kirigami-Inspired Shape Memory Alloy: Thermally Reconfigurable Antenna application.
Lee, Minjae; Lee, Sukwon; Lim, Sungjoon.
Afiliação
  • Lee M; School of Electrical and Electronics Engineering, College of Engineering, Chung-Ang University, 221, Heukseok-Dong, Dongjak-Gu, Seoul 156-756, Korea.
  • Lee S; School of Electrical and Electronics Engineering, College of Engineering, Chung-Ang University, 221, Heukseok-Dong, Dongjak-Gu, Seoul 156-756, Korea.
  • Lim S; School of Electrical and Electronics Engineering, College of Engineering, Chung-Ang University, 221, Heukseok-Dong, Dongjak-Gu, Seoul 156-756, Korea.
Sensors (Basel) ; 21(9)2021 Apr 26.
Article em En | MEDLINE | ID: mdl-33925833
ABSTRACT
Electromagnetic responses are generally controlled electrically or optically. However, although electrical and optical control allows fast response, they suffer from switching or tuning range limitations. This paper controls electromagnetic response by mechanical transformation. We introduce a novel kirigami-inspired structure for mechanical transformation with less strength, integrating a shape memory alloy actuator into the kirigami-inspired for mechanical transformation and hence electromagnetic control. The proposed approach was implemented for a reconfigurable antenna designed based on structural and electromagnetic analyses. The mechanical transformation was analyzed with thermal stimulus to predict the antenna geometry and electromagnetic analysis with different geometries predicted antenna performance. We numerically and experimentally verified that resonance response was thermally controlled using the kirigami-inspired antenna integrated with a shape memory alloy actuator.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sensors (Basel) Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sensors (Basel) Ano de publicação: 2021 Tipo de documento: Article