Your browser doesn't support javascript.
loading
Nowcasting COVID-19 incidence indicators during the Italian first outbreak.
Alaimo Di Loro, Pierfrancesco; Divino, Fabio; Farcomeni, Alessio; Jona Lasinio, Giovanna; Lovison, Gianfranco; Maruotti, Antonello; Mingione, Marco.
Afiliação
  • Alaimo Di Loro P; Department of Statistical Sciences, University of Rome "La Sapienza", Rome, Italy.
  • Divino F; Department of Bio-Sciences, University of Molise, Campobasso, Italy.
  • Farcomeni A; Department of Economics and Finance, University of Rome "Tor Vergata", Rome, Italy.
  • Jona Lasinio G; Department of Statistical Sciences, University of Rome "La Sapienza", Rome, Italy.
  • Lovison G; Department of Economics, Management and Statistics, University of Palermo, Palermo, Italy.
  • Maruotti A; Department of Epidemiology and Public Health, Swiss TPH Basel, Basel, Switzerland.
  • Mingione M; Department of GEPLI, Libera Universitá Maria Ss Assunta, Rome, Italy.
Stat Med ; 40(16): 3843-3864, 2021 07 20.
Article em En | MEDLINE | ID: mdl-33955571
A novel parametric regression model is proposed to fit incidence data typically collected during epidemics. The proposal is motivated by real-time monitoring and short-term forecasting of the main epidemiological indicators within the first outbreak of COVID-19 in Italy. Accurate short-term predictions, including the potential effect of exogenous or external variables are provided. This ensures to accurately predict important characteristics of the epidemic (e.g., peak time and height), allowing for a better allocation of health resources over time. Parameter estimation is carried out in a maximum likelihood framework. All computational details required to reproduce the approach and replicate the results are provided.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: COVID-19 Tipo de estudo: Incidence_studies / Prognostic_studies / Risk_factors_studies Limite: Humans País/Região como assunto: Europa Idioma: En Revista: Stat Med Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Itália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: COVID-19 Tipo de estudo: Incidence_studies / Prognostic_studies / Risk_factors_studies Limite: Humans País/Região como assunto: Europa Idioma: En Revista: Stat Med Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Itália