Your browser doesn't support javascript.
loading
Red blood cell phenotyping from 3D confocal images using artificial neural networks.
Simionato, Greta; Hinkelmann, Konrad; Chachanidze, Revaz; Bianchi, Paola; Fermo, Elisa; van Wijk, Richard; Leonetti, Marc; Wagner, Christian; Kaestner, Lars; Quint, Stephan.
Afiliação
  • Simionato G; Department of Experimental Physics, Saarland University, Campus E2.6, Saarbrücken, Germany.
  • Hinkelmann K; Institute for Clinical and Experimental Surgery, Saarland University, Campus University Hospital, Homburg, Germany.
  • Chachanidze R; Department of Experimental Physics, Saarland University, Campus E2.6, Saarbrücken, Germany.
  • Bianchi P; Department of Experimental Physics, Saarland University, Campus E2.6, Saarbrücken, Germany.
  • Fermo E; CNRS, University Grenoble Alpes, Grenoble INP, LRP, Grenoble, France.
  • van Wijk R; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.
  • Leonetti M; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.
  • Wagner C; Department of Clinical Chemistry & Haematology, University Medical Center Utrecht, Utrecht, The Netherlands.
  • Kaestner L; CNRS, University Grenoble Alpes, Grenoble INP, LRP, Grenoble, France.
  • Quint S; Department of Experimental Physics, Saarland University, Campus E2.6, Saarbrücken, Germany.
PLoS Comput Biol ; 17(5): e1008934, 2021 05.
Article em En | MEDLINE | ID: mdl-33983926
ABSTRACT
The investigation of cell shapes mostly relies on the manual classification of 2D images, causing a subjective and time consuming evaluation based on a portion of the cell surface. We present a dual-stage neural network architecture for analyzing fine shape details from confocal microscopy recordings in 3D. The system, tested on red blood cells, uses training data from both healthy donors and patients with a congenital blood disease, namely hereditary spherocytosis. Characteristic shape features are revealed from the spherical harmonics spectrum of each cell and are automatically processed to create a reproducible and unbiased shape recognition and classification. The results show the relation between the particular genetic mutation causing the disease and the shape profile. With the obtained 3D phenotypes, we suggest our method for diagnostics and theragnostics of blood diseases. Besides the application employed in this study, our algorithms can be easily adapted for the 3D shape phenotyping of other cell types and extend their use to other applications, such as industrial automated 3D quality control.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Redes Neurais de Computação / Microscopia Confocal / Eritrócitos Tipo de estudo: Guideline / Observational_studies / Prognostic_studies Limite: Humans Idioma: En Revista: PLoS Comput Biol Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Redes Neurais de Computação / Microscopia Confocal / Eritrócitos Tipo de estudo: Guideline / Observational_studies / Prognostic_studies Limite: Humans Idioma: En Revista: PLoS Comput Biol Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Alemanha