Temperature-Dependent Electronic Ground-State Charge Transfer in van der Waals Heterostructures.
Adv Mater
; 33(29): e2008677, 2021 Jul.
Article
em En
| MEDLINE
| ID: mdl-34032324
Electronic charge rearrangement between components of a heterostructure is the fundamental principle to reach the electronic ground state. It is acknowledged that the density of state distribution of the components governs the amount of charge transfer, but a notable dependence on temperature is not yet considered, particularly for weakly interacting systems. Here, it is experimentally observed that the amount of ground-state charge transfer in a van der Waals heterostructure formed by monolayer MoS2 sandwiched between graphite and a molecular electron acceptor layer increases by a factor of 3 when going from 7 K to room temperature. State-of-the-art electronic structure calculations of the full heterostructure that accounts for nuclear thermal fluctuations reveal intracomponent electron-phonon coupling and intercomponent electronic coupling as the key factors determining the amount of charge transfer. This conclusion is rationalized by a model applicable to multicomponent van der Waals heterostructures.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Prognostic_studies
Idioma:
En
Revista:
Adv Mater
Assunto da revista:
BIOFISICA
/
QUIMICA
Ano de publicação:
2021
Tipo de documento:
Article
País de afiliação:
Coréia do Sul