Your browser doesn't support javascript.
loading
Clinical connectome fingerprints of cognitive decline.
Sorrentino, Pierpaolo; Rucco, Rosaria; Lardone, Anna; Liparoti, Marianna; Troisi Lopez, Emahnuel; Cavaliere, Carlo; Soricelli, Andrea; Jirsa, Viktor; Sorrentino, Giuseppe; Amico, Enrico.
Afiliação
  • Sorrentino P; Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille, France.
  • Rucco R; Institute of Applied Sciences and Intelligent Systems, CNR, Pozzuoli, Italy; Department of Motor Sciences and Wellness, University of Naples "Parthenope", Italy.
  • Lardone A; Department of Social and Developmental Psychology, University of Rome "Sapienza, Italy.
  • Liparoti M; Department of Motor Sciences and Wellness, University of Naples "Parthenope", Italy.
  • Troisi Lopez E; Department of Motor Sciences and Wellness, University of Naples "Parthenope", Italy.
  • Cavaliere C; IRCCS SDN, Naples, Italy.
  • Soricelli A; Department of Motor Sciences and Wellness, University of Naples "Parthenope", Italy; IRCCS SDN, Naples, Italy.
  • Jirsa V; Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille, France.
  • Sorrentino G; Institute of Applied Sciences and Intelligent Systems, CNR, Pozzuoli, Italy; Department of Motor Sciences and Wellness, University of Naples "Parthenope", Italy; Hermitage Capodimonte Clinic, Naples, Italy. Electronic address: giuseppe.sorrentino@uniparthenope.it.
  • Amico E; Institute of Bioengineering, Center for Neuroprosthetics, EPFL, Geneva, Switzerland; Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland. Electronic address: enrico.amico@epfl.ch.
Neuroimage ; 238: 118253, 2021 09.
Article em En | MEDLINE | ID: mdl-34116156
Brain connectome fingerprinting is rapidly rising as a novel influential field in brain network analysis. Yet, it is still unclear whether connectivity fingerprints could be effectively used for mapping and predicting disease progression from human brain data. We hypothesize that dysregulation of brain activity in disease would reflect in worse subject identification. We propose a novel framework, Clinical Connectome Fingerprinting, to detect individual connectome features from clinical populations. We show that "clinical fingerprints" can map individual variations between elderly healthy subjects and patients with mild cognitive impairment in functional connectomes extracted from magnetoencephalography data. We find that identifiability is reduced in patients as compared to controls, and show that these connectivity features are predictive of the individual Mini-Mental State Examination (MMSE) score in patients. We hope that the proposed methodology can help in bridging the gap between connectivity features and biomarkers of brain dysfunction in large-scale brain networks.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Encéfalo / Cognição / Disfunção Cognitiva / Conectoma / Rede Nervosa Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Neuroimage Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2021 Tipo de documento: Article País de afiliação: França

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Encéfalo / Cognição / Disfunção Cognitiva / Conectoma / Rede Nervosa Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Neuroimage Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2021 Tipo de documento: Article País de afiliação: França