Your browser doesn't support javascript.
loading
Computation of condition-dependent proteome allocation reveals variability in the macro and micro nutrient requirements for growth.
Lloyd, Colton J; Monk, Jonathan; Yang, Laurence; Ebrahim, Ali; Palsson, Bernhard O.
Afiliação
  • Lloyd CJ; Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America.
  • Monk J; Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America.
  • Yang L; Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America.
  • Ebrahim A; Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America.
  • Palsson BO; Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America.
PLoS Comput Biol ; 17(6): e1007817, 2021 06.
Article em En | MEDLINE | ID: mdl-34161321
Sustaining a robust metabolic network requires a balanced and fully functioning proteome. In addition to amino acids, many enzymes require cofactors (coenzymes and engrafted prosthetic groups) to function properly. Extensively validated resource allocation models, such as genome-scale models of metabolism and gene expression (ME-models), have the ability to compute an optimal proteome composition underlying a metabolic phenotype, including the provision of all required cofactors. Here we apply the ME-model for Escherichia coli K-12 MG1655 to computationally examine how environmental conditions change the proteome and its accompanying cofactor usage. We found that: (1) The cofactor requirements computed by the ME-model mostly agree with the standard biomass objective function used in models of metabolism alone (M-models); (2) ME-model computations reveal non-intuitive variability in cofactor use under different growth conditions; (3) An analysis of ME-model predicted protein use in aerobic and anaerobic conditions suggests an enrichment in the use of peroxyl scavenging acids in the proteins used to sustain aerobic growth; (4) The ME-model could describe how limitation in key protein components affect the metabolic state of E. coli. Genome-scale models have thus reached a level of sophistication where they reveal intricate properties of functional proteomes and how they support different E. coli lifestyles.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nutrientes / Biologia Computacional / Proteoma / Escherichia coli K12 Tipo de estudo: Prognostic_studies Idioma: En Revista: PLoS Comput Biol Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nutrientes / Biologia Computacional / Proteoma / Escherichia coli K12 Tipo de estudo: Prognostic_studies Idioma: En Revista: PLoS Comput Biol Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos