Your browser doesn't support javascript.
loading
Efficient Electroconversion of Carbon Dioxide to Formate by a Reconstructed Amino-Functionalized Indium-Organic Framework Electrocatalyst.
Wang, Zhitong; Zhou, Yansong; Xia, Chenfeng; Guo, Wei; You, Bo; Xia, Bao Yu.
Afiliação
  • Wang Z; Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, School o
  • Zhou Y; Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, School o
  • Xia C; Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, School o
  • Guo W; Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, School o
  • You B; Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, School o
  • Xia BY; Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, School o
Angew Chem Int Ed Engl ; 60(35): 19107-19112, 2021 Aug 23.
Article em En | MEDLINE | ID: mdl-34164898
ABSTRACT
We report an amino-functionalized indium-organic framework for efficient CO2 reduction to formate. The immobilized amino groups strengthen the absorption and activation of CO2 and stabilize the active intermediates, which endow an enhanced catalytic conversion to formate despite the inevitable reduction and reconstruction of the functionalized indium-based catalyst during electrocatalysis. The reconstructed amino-functionalized indium-based catalyst demonstrates a high Faradaic efficiency of 94.4 % and a partial current density of 108 mA cm-2 at -1.1 V vs. RHE in a liquid-phase flow cell, and also delivers an enhanced current density of ca. 800 mA cm-2 at 3.4 V for the formate production in a gas-phase flow cell configuration. This work not only provides a molecular functionalization and assembling concept of hybrid electrocatalysts but also offers valuable understandings in electrocatalyst evolution and reactor optimization for CO2 electrocatalysis and beyond.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2021 Tipo de documento: Article