Your browser doesn't support javascript.
loading
Phenotypic plasticity can reverse the relative extent of intra- and interspecific variability across a thermal gradient.
Jacob, Staffan; Legrand, Delphine.
Afiliação
  • Jacob S; Station d'Ecologie Théorique et Expérimentale du CNRS UAR5321, 2 route du CNRS, 09200, Moulis, France.
  • Legrand D; Station d'Ecologie Théorique et Expérimentale du CNRS UAR5321, 2 route du CNRS, 09200, Moulis, France.
Proc Biol Sci ; 288(1953): 20210428, 2021 06 30.
Article em En | MEDLINE | ID: mdl-34187192
ABSTRACT
Intra- and interspecific variability can both ensure ecosystem functions. Generalizing the effects of individual and species assemblages requires understanding how much within and between species trait variation is genetically based or results from phenotypic plasticity. Phenotypic plasticity can indeed lead to rapid and important changes of trait distributions, and in turn community functionality, depending on environmental conditions, which raises a crucial question could phenotypic plasticity modify the relative importance of intra- and interspecific variability along environmental gradients? We quantified the fundamental niche of five genotypes in monocultures for each of five ciliate species along a wide thermal gradient in standardized conditions to assess the importance of phenotypic plasticity for the level of intraspecific variability compared to differences between species. We showed that phenotypic plasticity strongly influences trait variability and reverses the relative extent of intra- and interspecific variability along the thermal gradient. Our results show that phenotypic plasticity may lead to either increase or decrease of functional trait variability along environmental gradients, making intra- and interspecific variability highly dynamic components of ecological systems.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Adaptação Fisiológica / Ecossistema Idioma: En Revista: Proc Biol Sci Assunto da revista: BIOLOGIA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: França

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Adaptação Fisiológica / Ecossistema Idioma: En Revista: Proc Biol Sci Assunto da revista: BIOLOGIA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: França