Your browser doesn't support javascript.
loading
Tuning-fork-based piezoresponse force microscopy.
Labardi, M; Capaccioli, S.
Afiliação
  • Labardi M; CNR-IPCF, Sede Secondaria di Pisa, c/o Physics Department, University of Pisa, Largo Pontecorvo 3, I-56127 Pisa, Italy.
  • Capaccioli S; CNR-IPCF, Sede Secondaria di Pisa, c/o Physics Department, University of Pisa, Largo Pontecorvo 3, I-56127 Pisa, Italy.
Nanotechnology ; 32(44)2021 Aug 10.
Article em En | MEDLINE | ID: mdl-34284362
Surface displacements of a few picometers, occurring after application of an electric potential to piezoelectric materials, can be detected and mapped with nanometer-scale lateral resolution by scanning probe methods, the most notable being piezoresponse force microscopy (PFM). Yet, absolute determination of such displacements, giving access for instance to materials' piezoelectric coefficients, are hindered by both mechanical and electrostatic side-effects, requiring complex experimental and/or post-processing procedures for carrying out reliable results. The employment of quartz tuning-fork force sensors in an intermittent contact mode PFM is able to provide measurements of electrically-induced surface displacements that are not influenced by electrostatic side-effects typical of more conventional cantilever-based PFM. The method is shown to yield piezoeffect mapping on standard ferroelectric test crystals (periodically-poled lithium niobate and triglycine sulfate), as well as on a ferroelectric polymer (PVDF), with no visible influence from the applied dc electric potential.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanotechnology Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Itália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanotechnology Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Itália