Your browser doesn't support javascript.
loading
hiPSC Modeling of Lineage-Specific Smooth Muscle Cell Defects Caused by TGFBR1A230T Variant, and Its Therapeutic Implications for Loeys-Dietz Syndrome.
Zhou, Dong; Feng, Hao; Yang, Ying; Huang, Tingting; Qiu, Ping; Zhang, Chengxin; Olsen, Timothy R; Zhang, Jifeng; Chen, Y Eugene; Mizrak, Dogukan; Yang, Bo.
Afiliação
  • Zhou D; Department of Cardiac Surgery (D.Z., H.F., Y.Y., T.H., P.Q., Y.E.C., D.M., B.Y.), University of Michigan, Ann Arbor.
  • Feng H; Xiangya School of Medicine, Central South University, Changsha, China (D.Z., H.F., T.H.).
  • Yang Y; Department of Cardiac Surgery (D.Z., H.F., Y.Y., T.H., P.Q., Y.E.C., D.M., B.Y.), University of Michigan, Ann Arbor.
  • Huang T; Xiangya School of Medicine, Central South University, Changsha, China (D.Z., H.F., T.H.).
  • Qiu P; Department of Cardiac Surgery (D.Z., H.F., Y.Y., T.H., P.Q., Y.E.C., D.M., B.Y.), University of Michigan, Ann Arbor.
  • Zhang C; Department of Cardiac Surgery (D.Z., H.F., Y.Y., T.H., P.Q., Y.E.C., D.M., B.Y.), University of Michigan, Ann Arbor.
  • Olsen TR; Xiangya School of Medicine, Central South University, Changsha, China (D.Z., H.F., T.H.).
  • Zhang J; Department of Cardiac Surgery (D.Z., H.F., Y.Y., T.H., P.Q., Y.E.C., D.M., B.Y.), University of Michigan, Ann Arbor.
  • Chen YE; Department of Computational Medicine and Bioinformatics (C.Z.), University of Michigan, Ann Arbor.
  • Mizrak D; Department of Systems Biology, Columbia University, New York (T.R.O.).
  • Yang B; Department of Internal Medicine (J.Z., Y.E.C.), University of Michigan, Ann Arbor.
Circulation ; 144(14): 1145-1159, 2021 10 05.
Article em En | MEDLINE | ID: mdl-34346740
ABSTRACT

BACKGROUND:

Loeys-Dietz syndrome (LDS) is an inherited disorder predisposing individuals to thoracic aortic aneurysm and dissection. Currently, there are no medical treatments except surgical resection. Although the genetic basis of LDS is well-understood, molecular mechanisms underlying the disease remain elusive, impeding the development of a therapeutic strategy. In addition, aortic smooth muscle cells (SMCs) have heterogenous embryonic origins, depending on their spatial location, and lineage-specific effects of pathogenic variants on SMC function, likely causing regionally constrained LDS manifestations, have been unexplored.

METHODS:

We identified an LDS family with a dominant pathogenic variant in the TGFBR1 gene (TGFBR1A230T) causing aortic root aneurysm and dissection. To accurately model the molecular defects caused by this mutation, we used human induced pluripotent stem cells from a subject with normal aorta to generate human induced pluripotent stem cells carrying TGFBR1A230T, and corrected the mutation in patient-derived human induced pluripotent stem cells using CRISPR-Cas9 gene editing. After their lineage-specific SMC differentiation through cardiovascular progenitor cell (CPC) and neural crest stem cell lineages, we used conventional molecular techniques and single-cell RNA sequencing to characterize the molecular defects. The resulting data led to subsequent molecular and functional rescue experiments using activin A and rapamycin.

RESULTS:

Our results indicate the TGFBR1A230T mutation impairs contractile transcript and protein levels, and function in CPC-SMC, but not in neural crest stem cell-SMC. Single-cell RNA sequencing results implicate defective differentiation even in TGFBR1A230T/+ CPC-SMC including disruption of SMC contraction and extracellular matrix formation. Comparison of patient-derived and mutation-corrected cells supported the contractile phenotype observed in the mutant CPC-SMC. TGFBR1A230T selectively disrupted SMAD3 (SMAD family member 3) and AKT (AKT serine/threonine kinase) activation in CPC-SMC, and led to increased cell proliferation. Consistently, single-cell RNA sequencing revealed molecular similarities between a loss-of-function SMAD3 mutation (SMAD3c.652delA/+) and TGFBR1A230T/+. Last, combination treatment with activin A and rapamycin during or after SMC differentiation significantly improved the mutant CPC-SMC contractile gene expression and function, and rescued the mechanical properties of mutant CPC-SMC tissue constructs.

CONCLUSIONS:

This study reveals that a pathogenic TGFBR1 variant causes lineage-specific SMC defects informing the etiology of LDS-associated aortic root aneurysm. As a potential pharmacological strategy, our results highlight a combination treatment with activin A and rapamycin that can rescue the SMC defects caused by the variant.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Células-Tronco Pluripotentes Induzidas / Síndrome de Loeys-Dietz / Receptor do Fator de Crescimento Transformador beta Tipo I Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Circulation Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Células-Tronco Pluripotentes Induzidas / Síndrome de Loeys-Dietz / Receptor do Fator de Crescimento Transformador beta Tipo I Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Circulation Ano de publicação: 2021 Tipo de documento: Article