Your browser doesn't support javascript.
loading
Rapid Fabrication of Patterned Gels via Microchannel-Conformal Frontal Polymerization.
Shen, Haixia; Wang, Hao-Peng; Wang, Cai-Feng; Zhu, Liangliang; Li, Qing; Chen, Su.
Afiliação
  • Shen H; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing, 210009, P. R. China.
  • Wang HP; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing, 210009, P. R. China.
  • Wang CF; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing, 210009, P. R. China.
  • Zhu L; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing, 210009, P. R. China.
  • Li Q; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing, 210009, P. R. China.
  • Chen S; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing, 210009, P. R. China.
Macromol Rapid Commun ; 42(19): e2100421, 2021 Oct.
Article em En | MEDLINE | ID: mdl-34347322
ABSTRACT
From the perspective of both fundamental and applied science, it is extremely advisable to develop a facile and feasible strategy for fabricating gels with defined structures. Herein, the authors report the rapid synthesis of patterned gels by conducting frontal polymerization (FP) at millimeter-scale (2 mm), where a series of microchannels, including linear-, parallel-, divergent-, snakelike-, circular- and concentric circular channels, were used. They have investigated the effect of various factors (monomer mass ratio, channel size, initiator concentration, and solvent content) on FP at millimeter-scale, along with the propagating rule of the front during FP in these microchannels. In addition, we developed a new microfluidic-assisted FP (MFP) strategy by combining the FP and microfluidic technique. Interestingly, the MFP can realize the production of hollow-structured gel in a rapid and continuous fashion, which have never been reported. Our work not only offers an effective pathway towards patterned gels by the microchannel-conformal FP, but also gives new insight into the continuous production of hollow-structured materials. Such a method will be beneficial for fabricating vessel and scaffold materials in a flexible, easy-to-perform, time and energy saving way.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Microfluídica Idioma: En Revista: Macromol Rapid Commun Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Microfluídica Idioma: En Revista: Macromol Rapid Commun Ano de publicação: 2021 Tipo de documento: Article