Your browser doesn't support javascript.
loading
Collective Behavior Induced Highly Sensitive Magneto-Optic Effect in 2D Inorganic Liquid Crystals.
Lan, Tianshu; Ding, Baofu; Huang, Ziyang; Bian, Fenggang; Pan, Yikun; Cheng, Hui-Ming; Liu, Bilu.
Afiliação
  • Lan T; Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
  • Ding B; Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
  • Huang Z; Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
  • Bian F; Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
  • Pan Y; Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
  • Cheng HM; Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
  • Liu B; Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
J Am Chem Soc ; 143(32): 12886-12893, 2021 Aug 18.
Article em En | MEDLINE | ID: mdl-34369770
ABSTRACT
Collective behavior widely exists in nature, ranging from the macroscopic cloud of swallows to the microscopic cloud of colloidal particles. The behavior of an individual inside the collective is distinctive from its behavior alone, as it follows its neighbors. The introduction of such collective behavior in two-dimensional (2D) materials may offer new degrees of freedom to achieve desired but unattained properties. Here, we report a highly sensitive magneto-optic effect and transmissive magneto-coloration via introduction of collective behavior into magnetic 2D material dispersions. The increase of ionic strength in the dispersion enhances the collective behavior of colloidal particles, giving rise to a magneto-optic Cotton-Mouton coefficient up to 2700 T-2 m-1 which is the highest value obtained so far, being 3 orders of magnitude larger than other known transparent media. We also reveal linear dependence of magneto-coloration on the concentration and hydration ratios of ions. Such linear dependence and the extremely large Cotton-Mouton coefficient cooperatively allow fabrication of giant magneto-birefringent devices for color-centered visual sensing.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Revista: J Am Chem Soc Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Revista: J Am Chem Soc Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China