Your browser doesn't support javascript.
loading
Enhanced production of 2-phenylethanol by salicylic acid and cyclodextrins in cell suspension cultures of the unexplored filamentous fungus Monochaetinula geoffroeana.
Vázquez, María Belén; Matencio, Adrián; Bianchinotti, María Virginia; García-Carmona, Francisco; López-Nicolás, José Manuel.
Afiliação
  • Vázquez MB; Department of Biochemistry and Molecular Biology-A, Faculty of Biology, University of Murcia, Murcia, Spain.
  • Matencio A; Dipartimento di Chimica, Università degli studi di Torino, Turin, Italy.
  • Bianchinotti MV; CERZOS-CONICET, CCT Bahía Blanca, Bahía Blanca, Argentina.
  • García-Carmona F; Department of Biochemistry and Molecular Biology-A, Faculty of Biology, University of Murcia, Murcia, Spain.
  • López-Nicolás JM; Department of Biochemistry and Molecular Biology-A, Faculty of Biology, University of Murcia, Murcia, Spain.
J Sci Food Agric ; 102(4): 1609-1618, 2022 Mar 15.
Article em En | MEDLINE | ID: mdl-34405402
ABSTRACT

BACKGROUND:

2-Phenylethanol (PEA) is a higher aromatic alcohol with a rose-like odor, which is used in several industries. Although PEA can be synthesized, consumers are increasingly concerned about the toxicity of chemically synthesized products, and prefer natural aroma compound. PEA occurs naturally in the environment but concentrations are too low to justify extraction.

RESULTS:

The present study offers a novel biological source of PEA the filamentous fungi Monochaetinula geoffroeana. We report the highest recorded yield of PEA of fungal origin to date 6.52 g L-1 . The volatility and low water solubility of PEA can affect its use in many industries, for which reason complexation studies of PEA and cyclodextrins were carried out using the phase solubility technique. PEA formed 11 stoichiometric inclusion complexes with natural and modified CDs, the highest encapsulation constant being obtained with MßCD (K11  = 299.88 L mol-1 ). The complexation process significantly increased the water solubility of PEA. A computational study showed a high degree of correlation between computed scores and experimental values. Furthermore, this study reports the role of salicylic acid as an effective elicitor for improved PEA production by the studied fungi. Supplementation with 10 µmol L-1 salicylic acid increased PEA production from 6.52 to 10.54 g L-1 .

CONCLUSION:

The best treatment to enhance PEA production by M. geoffroeana under laboratory conditions was to use salicylic acid 10 µmol L-1 . Due to the commercial importance of PEA, further investigation is needed to improve PEA production by M. geoffroeana and to optimize culture conditions in order to standardize yields. © 2021 Society of Chemical Industry.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Álcool Feniletílico / Ciclodextrinas Idioma: En Revista: J Sci Food Agric Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Espanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Álcool Feniletílico / Ciclodextrinas Idioma: En Revista: J Sci Food Agric Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Espanha