Your browser doesn't support javascript.
loading
Prediction of Genetic Groups within Brettanomyces bruxellensis through Cell Morphology Using a Deep Learning Tool.
Lebleux, Manon; Denimal, Emmanuel; De Oliveira, Déborah; Marin, Ambroise; Desroche, Nicolas; Alexandre, Hervé; Weidmann, Stéphanie; Rousseaux, Sandrine.
Afiliação
  • Lebleux M; Laboratoire VAlMiS-IUVV, AgroSup Dijon, UMR PAM A 02.102, University Bourgogne Franche-Comté, F-21000 Dijon, France.
  • Denimal E; AgroSup Dijon, Direction Scientifique, Appui à la Recherche, 26 Boulevard Docteur Petitjean, F-21000 Dijon, France.
  • De Oliveira D; Laboratoire VAlMiS-IUVV, AgroSup Dijon, UMR PAM A 02.102, University Bourgogne Franche-Comté, F-21000 Dijon, France.
  • Marin A; Plateau D'imagerie DimaCell, Esplanade Erasme, Agrosup Dijon, UMR PAM A 02.102, University Bourgogne Franche-Comté, F-21000 Dijon, France.
  • Desroche N; Nexidia S.A.S., 15 Rue de Mayence, 21000 Dijon, France.
  • Alexandre H; Laboratoire VAlMiS-IUVV, AgroSup Dijon, UMR PAM A 02.102, University Bourgogne Franche-Comté, F-21000 Dijon, France.
  • Weidmann S; Laboratoire VAlMiS-IUVV, AgroSup Dijon, UMR PAM A 02.102, University Bourgogne Franche-Comté, F-21000 Dijon, France.
  • Rousseaux S; Laboratoire VAlMiS-IUVV, AgroSup Dijon, UMR PAM A 02.102, University Bourgogne Franche-Comté, F-21000 Dijon, France.
J Fungi (Basel) ; 7(8)2021 Jul 21.
Article em En | MEDLINE | ID: mdl-34436120
Brettanomyces bruxellensis is described as a wine spoilage yeast with many mainly strain-dependent genetic characteristics, bestowing tolerance against environmental stresses and persistence during the winemaking process. Thus, it is essential to discriminate B. bruxellensis isolates at the strain level in order to predict their stress resistance capacities. Few predictive tools are available to reveal intraspecific diversity within B. bruxellensis species; also, they require expertise and can be expensive. In this study, a Random Amplified Polymorphic DNA (RAPD) adapted PCR method was used with three different primers to discriminate 74 different B. bruxellensis isolates. High correlation between the results of this method using the primer OPA-09 and those of a previous microsatellite analysis was obtained, allowing us to cluster the isolates among four genetic groups more quickly and cheaply than microsatellite analysis. To make analysis even faster, we further investigated the correlation suggested in a previous study between genetic groups and cell polymorphism using the analysis of optical microscopy images via deep learning. A Convolutional Neural Network (CNN) was trained to predict the genetic group of B. bruxellensis isolates with 96.6% accuracy. These methods make intraspecific discrimination among B. bruxellensis species faster, simpler and less costly. These results open up very promising new perspectives in oenology for the study of microbial ecosystems.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Fungi (Basel) Ano de publicação: 2021 Tipo de documento: Article País de afiliação: França

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Fungi (Basel) Ano de publicação: 2021 Tipo de documento: Article País de afiliação: França