Your browser doesn't support javascript.
loading
Mutation of a Ubiquitin Carboxy Terminal Hydrolase L1 Lipid Binding Site Alleviates Cell Death, Axonal Injury, and Behavioral Deficits After Traumatic Brain Injury in Mice.
Mi, Zhiping; Liu, Hao; Rose, Marie E; Ma, Jie; Reay, Daniel P; Ma, Xiecheng; Henchir, Jeremy J; Dixon, C Edward; Graham, Steven H.
Afiliação
  • Mi Z; Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA; Department of Neurology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, 15213, USA. Electronic address: miz2@upmc.edu.
  • Liu H; Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA; Department of Neurology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, 15213, USA.
  • Rose ME; Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA; Department of Neurology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, 15213, USA. Electronic address: RoseME@upmc.edu.
  • Ma J; Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA; Department of Neurology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, 15213, USA. Electronic address: maj5@upmc.edu.
  • Reay DP; Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA; Department of Neurology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, 15213, USA. Electronic address: ReayDP@upmc.edu.
  • Ma X; Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA; Department of Neurosurgery, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Department of Critical Care Medicine, University of Pittsburgh, School of Medicine,
  • Henchir JJ; Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA; Department of Neurosurgery, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Department of Critical Care Medicine, University of Pittsburgh, School of Medicine,
  • Dixon CE; Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA; Department of Neurosurgery, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Department of Critical Care Medicine, University of Pittsburgh, School of Medicine,
  • Graham SH; Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA; Department of Neurology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, 15213, USA. Electronic address: sgra@pitt.edu.
Neuroscience ; 475: 127-136, 2021 11 01.
Article em En | MEDLINE | ID: mdl-34508847
ABSTRACT
Ubiquitin carboxy terminal hydrolase L1 (UCHL1) is a protein highly expressed in neurons that may play important roles in the ubiquitin proteasome pathway (UPP) in neurons, axonal integrity, and motor function after traumatic brain injury (TBI). Binding of reactive lipid species to cysteine 152 of UCHL1 results in unfolding, aggregation, and inactivation of the enzyme. To test the role of this mechanism in TBI, mice bearing a cysteine to alanine mutation at site 152 (C152A mice) that renders UCHL1 resistant to inactivation by reactive lipids were subjected to the controlled cortical impact model (CCI) of TBI and compared to wild type (WT) controls. Alterations in protein ubiquitination and activation of autophagy pathway markers in traumatized brain were detected by immunoblotting. Cell death and axonal injury were determined by histological assessment and anti-amyloid precursor protein (APP) immunohistochemistry. Behavioral outcomes were determined using the beam balance and Morris water maze tests. C152A mice had reduced accumulation of ubiquitinated proteins, decreased activation of the autophagy markers Beclin-1 and LC3B, a decreased number of abnormal axons, decreased CA1 cell death, and improved motor and cognitive function compared to WT controls after CCI; no significant change in spared tissue volume was observed. These results suggest that binding of lipid substrates to cysteine 152 of UCHL1 is important in the pathogenesis of injury and recovery after TBI and may be a novel target for future therapeutic approaches.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ubiquitina Tiolesterase / Lesões Encefálicas Traumáticas Limite: Animals Idioma: En Revista: Neuroscience Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ubiquitina Tiolesterase / Lesões Encefálicas Traumáticas Limite: Animals Idioma: En Revista: Neuroscience Ano de publicação: 2021 Tipo de documento: Article