Your browser doesn't support javascript.
loading
Stable epidermal electronic device with strain isolation induced by in situ Joule heating.
Wang, Zihao; Lu, Qifeng; Xia, Yizhang; Feng, Simin; Shi, Yixiang; Wang, Shuqi; Yang, Xianqing; Zhao, Yangyong; Sun, Fuqin; Li, Tie; Zhang, Ting.
Afiliação
  • Wang Z; i-lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu 215123 P. R. China.
  • Lu Q; Nano Science and Technology Institute, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 P. R. China.
  • Xia Y; i-lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu 215123 P. R. China.
  • Feng S; School of Computer Science & School of Cyberspace Science, XiangTan University, Yuhu District, Xiangtan, Hunan 411105 P. R. China.
  • Shi Y; i-lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu 215123 P. R. China.
  • Wang S; i-lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu 215123 P. R. China.
  • Yang X; i-lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu 215123 P. R. China.
  • Zhao Y; i-lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu 215123 P. R. China.
  • Sun F; i-lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu 215123 P. R. China.
  • Li T; i-lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu 215123 P. R. China.
  • Zhang T; i-lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu 215123 P. R. China.
Microsyst Nanoeng ; 7: 56, 2021.
Article em En | MEDLINE | ID: mdl-34567769
ABSTRACT
Epidermal electronics play increasingly important roles in human-machine interfaces. However, their efficient fabrication while maintaining device stability and reliability remains an unresolved challenge. Here, a facile in situ Joule heating method is proposed for fabricating stable epidermal electronics on a polyvinyl alcohol (PVA) substrate. Benefitting from the precise control of heating locations, the crystallization and enhanced rigidity of PVA are restricted to desired areas, leading to strain isolation of the active regions. As a result, the electronic device can be conformably attached to skin while showing negligible degradation in device performance during deformation. Based on this method, a flexible surface electromyography (sEMG) sensor with outstanding stability and highly comfortable wearability is demonstrated, showing high accuracy (91.83%) for human hand gesture recognition. These results imply that the fabrication method proposed in this research is a facile and reliable approach for the fabrication of epidermal electronics.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Microsyst Nanoeng Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Microsyst Nanoeng Ano de publicação: 2021 Tipo de documento: Article