Your browser doesn't support javascript.
loading
Blood and immune development in human fetal bone marrow and Down syndrome.
Jardine, Laura; Webb, Simone; Goh, Issac; Quiroga Londoño, Mariana; Reynolds, Gary; Mather, Michael; Olabi, Bayanne; Stephenson, Emily; Botting, Rachel A; Horsfall, Dave; Engelbert, Justin; Maunder, Daniel; Mende, Nicole; Murnane, Caitlin; Dann, Emma; McGrath, Jim; King, Hamish; Kucinski, Iwo; Queen, Rachel; Carey, Christopher D; Shrubsole, Caroline; Poyner, Elizabeth; Acres, Meghan; Jones, Claire; Ness, Thomas; Coulthard, Rowen; Elliott, Natalina; O'Byrne, Sorcha; Haltalli, Myriam L R; Lawrence, John E; Lisgo, Steven; Balogh, Petra; Meyer, Kerstin B; Prigmore, Elena; Ambridge, Kirsty; Jain, Mika Sarkin; Efremova, Mirjana; Pickard, Keir; Creasey, Thomas; Bacardit, Jaume; Henderson, Deborah; Coxhead, Jonathan; Filby, Andrew; Hussain, Rafiqul; Dixon, David; McDonald, David; Popescu, Dorin-Mirel; Kowalczyk, Monika S; Li, Bo; Ashenberg, Orr.
Afiliação
  • Jardine L; Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
  • Webb S; Haematology Department, Freeman Hospital, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
  • Goh I; Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
  • Quiroga Londoño M; Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
  • Reynolds G; Department of Haematology, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
  • Mather M; Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
  • Olabi B; Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
  • Stephenson E; Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
  • Botting RA; Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
  • Horsfall D; Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
  • Engelbert J; Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
  • Maunder D; Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
  • Mende N; Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
  • Murnane C; Department of Haematology, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
  • Dann E; Department of Paediatrics, University of Oxford, Oxford, UK.
  • McGrath J; Wellcome Sanger Institute, Hinxton, UK.
  • King H; Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
  • Kucinski I; Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK.
  • Queen R; Department of Haematology, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
  • Carey CD; Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
  • Shrubsole C; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
  • Poyner E; Haematology Department, Freeman Hospital, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
  • Acres M; Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
  • Jones C; Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
  • Ness T; NovoPath, Department of Pathology, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
  • Coulthard R; NovoPath, Department of Pathology, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
  • Elliott N; NovoPath, Department of Pathology, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
  • O'Byrne S; Department of Paediatrics, University of Oxford, Oxford, UK.
  • Haltalli MLR; Department of Paediatrics, University of Oxford, Oxford, UK.
  • Lawrence JE; Department of Haematology, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
  • Lisgo S; Wellcome Sanger Institute, Hinxton, UK.
  • Balogh P; Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
  • Meyer KB; Wellcome Sanger Institute, Hinxton, UK.
  • Prigmore E; Wellcome Sanger Institute, Hinxton, UK.
  • Ambridge K; Wellcome Sanger Institute, Hinxton, UK.
  • Jain MS; Wellcome Sanger Institute, Hinxton, UK.
  • Efremova M; Wellcome Sanger Institute, Hinxton, UK.
  • Pickard K; Barts Cancer Institute, Queen Mary University of London, London, UK.
  • Creasey T; Haematology Department, Freeman Hospital, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
  • Bacardit J; Haematology Department, Freeman Hospital, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
  • Henderson D; Wolfson Childhood Cancer Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK.
  • Coxhead J; School of Computing, Newcastle University, Newcastle upon Tyne, UK.
  • Filby A; Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
  • Hussain R; Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
  • Dixon D; Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
  • McDonald D; Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
  • Popescu DM; Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
  • Kowalczyk MS; Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
  • Li B; Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
  • Ashenberg O; Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
Nature ; 598(7880): 327-331, 2021 10.
Article em En | MEDLINE | ID: mdl-34588693
ABSTRACT
Haematopoiesis in the bone marrow (BM) maintains blood and immune cell production throughout postnatal life. Haematopoiesis first emerges in human BM at 11-12 weeks after conception1,2, yet almost nothing is known about how fetal BM (FBM) evolves to meet the highly specialized needs of the fetus and newborn. Here we detail the development of FBM, including stroma, using multi-omic assessment of mRNA and multiplexed protein epitope expression. We find that the full blood and immune cell repertoire is established in FBM in a short time window of 6-7 weeks early in the second trimester. FBM promotes rapid and extensive diversification of myeloid cells, with granulocytes, eosinophils and dendritic cell subsets emerging for the first time. The substantial expansion of B lymphocytes in FBM contrasts with fetal liver at the same gestational age. Haematopoietic progenitors from fetal liver, FBM and cord blood exhibit transcriptional and functional differences that contribute to tissue-specific identity and cellular diversification. Endothelial cell types form distinct vascular structures that we show are regionally compartmentalized within FBM. Finally, we reveal selective disruption of B lymphocyte, erythroid and myeloid development owing to a cell-intrinsic differentiation bias as well as extrinsic regulation through an altered microenvironment in Down syndrome (trisomy 21).
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Medula Óssea / Células da Medula Óssea / Síndrome de Down / Feto / Hematopoese / Sistema Imunitário Limite: Humans Idioma: En Revista: Nature Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Medula Óssea / Células da Medula Óssea / Síndrome de Down / Feto / Hematopoese / Sistema Imunitário Limite: Humans Idioma: En Revista: Nature Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Reino Unido