Your browser doesn't support javascript.
loading
MuellerNet: a hybrid 3D-2D CNN for cell classification with Mueller matrix images.
Appl Opt ; 60(22): 6682-6694, 2021 Aug 01.
Article em En | MEDLINE | ID: mdl-34612912
ABSTRACT
Different from conventional microimaging techniques, polarization imaging can generate multiple polarization images in a single perspective by changing the polarization angle. However, how to efficiently fuse the information in these multiple polarization images by a convolutional neural network (CNN) is still a challenging problem. In this paper, we propose a hybrid 3D-2D convolutional neural network called MuellerNet, to classify biological cells with Mueller matrix images (MMIs). The MuellerNet includes a normal stream and a polarimetric stream, in which the first Mueller matrix image is taken as the input of normal stream, and the rest MMIs are stacked to form the input of a polarimetric stream. The normal stream is mainly constructed with a backbone network and, in the polarimetric stream, the attention mechanism is used to adaptively assign weights to different convolutional maps. To improve the network's discrimination, a loss function is introduced to simultaneously optimize parameters of the two streams. Two Mueller matrix image datasets are built, which include four types of breast cancer cells and three types of algal cells, respectively. Experiments are conducted on these two datasets with many well-known and recent networks. Results show that the proposed network efficiently improves the classification accuracy and helps to find discriminative features in MMIs.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Appl Opt Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Appl Opt Ano de publicação: 2021 Tipo de documento: Article