Your browser doesn't support javascript.
loading
Diverse alterations associated with resistance to KRAS(G12C) inhibition.
Zhao, Yulei; Murciano-Goroff, Yonina R; Xue, Jenny Y; Ang, Agnes; Lucas, Jessica; Mai, Trang T; Da Cruz Paula, Arnaud F; Saiki, Anne Y; Mohn, Deanna; Achanta, Pragathi; Sisk, Ann E; Arora, Kanika S; Roy, Rohan S; Kim, Dongsung; Li, Chuanchuan; Lim, Lee P; Li, Mark; Bahr, Amber; Loomis, Brian R; de Stanchina, Elisa; Reis-Filho, Jorge S; Weigelt, Britta; Berger, Michael; Riely, Gregory; Arbour, Kathryn C; Lipford, J Russell; Li, Bob T; Lito, Piro.
Afiliação
  • Zhao Y; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, USA.
  • Murciano-Goroff YR; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Xue JY; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, USA.
  • Ang A; Weill Cornell-Rockefeller-Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA.
  • Lucas J; Amgen, Thousand Oaks, CA, USA.
  • Mai TT; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, USA.
  • Da Cruz Paula AF; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, USA.
  • Saiki AY; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Mohn D; Amgen, Thousand Oaks, CA, USA.
  • Achanta P; Amgen, Thousand Oaks, CA, USA.
  • Sisk AE; Amgen, Thousand Oaks, CA, USA.
  • Arora KS; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Roy RS; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Kim D; Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Li C; Weill Cornell-Rockefeller-Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA.
  • Lim LP; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, USA.
  • Li M; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, USA.
  • Bahr A; Resolution Bioscience, Kirkland, WA, USA.
  • Loomis BR; Resolution Bioscience, Kirkland, WA, USA.
  • de Stanchina E; Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Reis-Filho JS; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Weigelt B; Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Berger M; Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Riely G; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Arbour KC; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Lipford JR; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Li BT; Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Lito P; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Nature ; 599(7886): 679-683, 2021 11.
Article em En | MEDLINE | ID: mdl-34759319
ABSTRACT
Inactive state-selective KRAS(G12C) inhibitors1-8 demonstrate a 30-40% response rate and result in approximately 6-month median progression-free survival in patients with lung cancer9. The genetic basis for resistance to these first-in-class mutant GTPase inhibitors remains under investigation. Here we evaluated matched pre-treatment and post-treatment specimens from 43 patients treated with the KRAS(G12C) inhibitor sotorasib. Multiple treatment-emergent alterations were observed across 27 patients, including alterations in KRAS, NRAS, BRAF, EGFR, FGFR2, MYC and other genes. In preclinical patient-derived xenograft and cell line models, resistance to KRAS(G12C) inhibition was associated with low allele frequency hotspot mutations in KRAS(G12V or G13D), NRAS(Q61K or G13R), MRAS(Q71R) and/or BRAF(G596R), mirroring observations in patients. Single-cell sequencing in an isogenic lineage identified secondary RAS and/or BRAF mutations in the same cells as KRAS(G12C), where they bypassed inhibition without affecting target inactivation. Genetic or pharmacological targeting of ERK signalling intermediates enhanced the antiproliferative effect of G12C inhibitor treatment in models with acquired RAS or BRAF mutations. Our study thus suggests a heterogenous pattern of resistance with multiple subclonal events emerging during G12C inhibitor treatment. A subset of patients in our cohort acquired oncogenic KRAS, NRAS or BRAF mutations, and resistance in this setting may be delayed by co-targeting of ERK signalling intermediates. These findings merit broader evaluation in prospective clinical trials.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Proto-Oncogênicas p21(ras) / Resistencia a Medicamentos Antineoplásicos / Mutação / Neoplasias / Antineoplásicos Tipo de estudo: Etiology_studies / Incidence_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Animals / Female / Humans Idioma: En Revista: Nature Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Proto-Oncogênicas p21(ras) / Resistencia a Medicamentos Antineoplásicos / Mutação / Neoplasias / Antineoplásicos Tipo de estudo: Etiology_studies / Incidence_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Animals / Female / Humans Idioma: En Revista: Nature Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos