Your browser doesn't support javascript.
loading
Engineering DNA on the Surface of Upconversion Nanoparticles for Bioanalysis and Therapeutics.
Zhang, Dailiang; Peng, Ruizi; Liu, Wenfei; Donovan, Michael J; Wang, Linlin; Ismail, Ismail; Li, Jin; Li, Juan; Qu, Fengli; Tan, Weihong.
Afiliação
  • Zhang D; The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
  • Peng R; The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
  • Liu W; Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
  • Donovan MJ; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.
  • Wang L; The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
  • Ismail I; Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
  • Li J; The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
  • Li J; The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
  • Qu F; The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
  • Tan W; The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
ACS Nano ; 15(11): 17257-17274, 2021 11 23.
Article em En | MEDLINE | ID: mdl-34766752
ABSTRACT
Surface modification of inorganic nanomaterials with biomolecules has enabled the development of composites integrated with extensive properties. Lanthanide ion-doped upconversion nanoparticles (UCNPs) are one class of inorganic nanomaterials showing optical properties that convert photons of lower energy into higher energy. Additionally, DNA oligonucleotides have exhibited powerful capabilities for organizing various nanomaterials with versatile topological configurations. Through rational design and nanotechnology, DNA-based UCNPs offer predesigned functionality and potential. To fully harness the capabilities of UCNPs integrated with DNA, various DNA-UCNP composites have been developed for diagnosis and therapeutics. In this review, beginning with the introduction of the UCNPs and the conjugation of DNA strands on the surface of UCNPs, we present an overview of the recent progress of DNA-UCNP composites while focusing on their applications for bioanalysis and therapeutics.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Elementos da Série dos Lantanídeos / Nanopartículas Idioma: En Revista: ACS Nano Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Elementos da Série dos Lantanídeos / Nanopartículas Idioma: En Revista: ACS Nano Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China