Your browser doesn't support javascript.
loading
From complex data to biological insight: 'DEKER' feature selection and network inference.
Hayes, Sean M S; Sachs, Jeffrey R; Cho, Carolyn R.
Afiliação
  • Hayes SMS; Quantitative Pharmacology and Pharmacometrics, Merck & Co., Inc., Kenilworth, NJ, USA. sean.hayes@merck.com.
  • Sachs JR; Quantitative Pharmacology and Pharmacometrics, Merck & Co., Inc., Kenilworth, NJ, USA.
  • Cho CR; Quantitative Pharmacology and Pharmacometrics, Merck & Co., Inc., Kenilworth, NJ, USA.
J Pharmacokinet Pharmacodyn ; 49(1): 81-99, 2022 02.
Article em En | MEDLINE | ID: mdl-34791577
Network inference is a valuable approach for gaining mechanistic insight from high-dimensional biological data. Existing methods for network inference focus on ranking all possible relations (edges) among all measured quantities such as genes, proteins, metabolites (features) observed, which yields a dense network that is challenging to interpret. Identifying a sparse, interpretable network using these methods thus requires an error-prone thresholding step which compromises their performance. In this article we propose a new method, DEKER-NET, that addresses this limitation by directly identifying a sparse, interpretable network without thresholding, improving real-world performance. DEKER-NET uses a novel machine learning method for feature selection in an iterative framework for network inference. DEKER-NET is extremely flexible, handling linear and nonlinear relations while making no assumptions about the underlying distribution of data, and is suitable for categorical or continuous variables. We test our method on the Dialogue for Reverse Engineering Assessments and Methods (DREAM) challenge data, demonstrating that it can directly identify sparse, interpretable networks without thresholding while maintaining performance comparable to the hypothetical best-case thresholded network of other methods.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Redes Reguladoras de Genes Tipo de estudo: Prognostic_studies Idioma: En Revista: J Pharmacokinet Pharmacodyn Assunto da revista: FARMACOLOGIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Redes Reguladoras de Genes Tipo de estudo: Prognostic_studies Idioma: En Revista: J Pharmacokinet Pharmacodyn Assunto da revista: FARMACOLOGIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos