Your browser doesn't support javascript.
loading
Blow-spun nanofibrous composite Self-cleaning membrane for enhanced purification of oily wastewater.
Lu, Tao; Liang, Hebin; Cao, Wenxuan; Deng, Yankang; Qu, Qingli; Ma, Wenjing; Xiong, Ranhua; Huang, Chaobo.
Afiliação
  • Lu T; Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China.
  • Liang H; Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China.
  • Cao W; Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China.
  • Deng Y; Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China.
  • Qu Q; Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China.
  • Ma W; Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China. Electronic address: mawenjing@njfu.edu.cn.
  • Xiong R; Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China. Electronic address: ranhua.xiong@njfu.edu.cn.
  • Huang C; Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China. Electronic address: Chaobo.Huang@njfu.edu.cn.
J Colloid Interface Sci ; 608(Pt 3): 2860-2869, 2022 Feb 15.
Article em En | MEDLINE | ID: mdl-34802769
ABSTRACT
Membrane separation is one of the most effective strategies for water treatment. However, problems such as poor emulsion separation performance, single function and easy membrane fouling limit its application in dealing with complex wastewater. The synergistic treatment technology of adsorption and visible light catalysis is an efficient and environment-friendly method to degrade organic pollutants. Here, we report a simple method to fabricate Zeolitic Imidazolate Framework-8/Graphene oxide/Polyacrylonitrile (ZIF-8/GO/PAN) nanofibrous membranes and their multifunctional treatment capacity for complex wastewater. The construction of superhydrophilic and underwater superoleophobic surface structure has achieved excellent emulsion separation performance (with a maximum flux of 6779.66 L m-2h-1), visible light photocatalytic degradation (with an efficiency of 96.5% in 90 min) and antibacterial properties. Moreover, the fibrous membrane also shows good biosafety, and will not have toxic effects on aquatic organisms. These excellent performances endow this membrane with great potential in complex wastewater purification.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Purificação da Água / Nanofibras Idioma: En Revista: J Colloid Interface Sci Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Purificação da Água / Nanofibras Idioma: En Revista: J Colloid Interface Sci Ano de publicação: 2022 Tipo de documento: Article