Your browser doesn't support javascript.
loading
Cascading epigenomic analysis for identifying disease genes from the regulatory landscape of GWAS variants.
Ng, Bernard; Casazza, William; Kim, Nam Hee; Wang, Chendi; Farhadi, Farnush; Tasaki, Shinya; Bennett, David A; De Jager, Philip L; Gaiteri, Christopher; Mostafavi, Sara.
Afiliação
  • Ng B; Department of Statistics and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
  • Casazza W; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada.
  • Kim NH; Department of Statistics and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
  • Wang C; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada.
  • Farhadi F; Department of Computer Science, University of British Columbia, Vancouver, British Columbia, Canada.
  • Tasaki S; Department of Statistics and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
  • Bennett DA; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada.
  • De Jager PL; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada.
  • Gaiteri C; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America.
  • Mostafavi S; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America.
PLoS Genet ; 17(11): e1009918, 2021 11.
Article em En | MEDLINE | ID: mdl-34807913
The majority of genetic variants detected in genome wide association studies (GWAS) exert their effects on phenotypes through gene regulation. Motivated by this observation, we propose a multi-omic integration method that models the cascading effects of genetic variants from epigenome to transcriptome and eventually to the phenome in identifying target genes influenced by risk alleles. This cascading epigenomic analysis for GWAS, which we refer to as CEWAS, comprises two types of models: one for linking cis genetic effects to epigenomic variation and another for linking cis epigenomic variation to gene expression. Applying these models in cascade to GWAS summary statistics generates gene level statistics that reflect genetically-driven epigenomic effects. We show on sixteen brain-related GWAS that CEWAS provides higher gene detection rate than related methods, and finds disease relevant genes and gene sets that point toward less explored biological processes. CEWAS thus presents a novel means for exploring the regulatory landscape of GWAS variants in uncovering disease mechanisms.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Predisposição Genética para Doença / Locos de Características Quantitativas / Estudo de Associação Genômica Ampla / Doenças Genéticas Inatas Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: PLoS Genet Assunto da revista: GENETICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Canadá

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Predisposição Genética para Doença / Locos de Características Quantitativas / Estudo de Associação Genômica Ampla / Doenças Genéticas Inatas Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: PLoS Genet Assunto da revista: GENETICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Canadá