Your browser doesn't support javascript.
loading
Liquid walls and interfaces in arbitrary directions stabilized by vibrations.
Apffel, Benjamin; Hidalgo-Caballero, Samuel; Eddi, Antonin; Fort, Emmanuel.
Afiliação
  • Apffel B; Institut Langevin, Ecole Supérieure de Physique et de Chimie Industrielles de Paris, Université Paris Sciences et Lettres, CNRS, Paris F-75005, France.
  • Hidalgo-Caballero S; Institut Langevin, Ecole Supérieure de Physique et de Chimie Industrielles de Paris, Université Paris Sciences et Lettres, CNRS, Paris F-75005, France.
  • Eddi A; Laboratoire de Physique et Mécanique des Milieux Hétérogènes, Ecole Supérieure de Physique et de Chimie Industrielles de Paris, CNRS, Université Paris Sciences et Lettres, Sorbonne Université, Université de Paris, Paris F-75005, France.
  • Fort E; Institut Langevin, Ecole Supérieure de Physique et de Chimie Industrielles de Paris, Université Paris Sciences et Lettres, CNRS, Paris F-75005, France; emmanuel.fort@espci.fr.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Article em En | MEDLINE | ID: mdl-34819375
ABSTRACT
Gravity shapes liquids and plays a crucial role in their internal balance. Creating new equilibrium configurations irrespective of the presence of a gravitational field is challenging with applications on Earth as well as in zero-gravity environments. Vibrations are known to alter the shape of liquid interfaces and also to change internal dynamics and stability in depth. Here, we show that vibrations can also create an "artificial gravity" in any direction. We demonstrate that a liquid can maintain an inclined interface when shaken in an arbitrary direction. A necessary condition for the equilibrium to occur is the existence of a velocity gradient determined by dynamical boundary conditions. However, the no-slip boundary condition and incompressibility can perturb the required velocity profile, leading to a destabilization of the equilibrium. We show that liquid layers provide a solution, and liquid walls of several centimeters in height can thus be stabilized. We show that the buoyancy equilibrium is not affected by the forcing.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2021 Tipo de documento: Article País de afiliação: França

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2021 Tipo de documento: Article País de afiliação: França