Antibacterial and anticandidal effects of atmospheric-pressure, non-thermal, nitrogen- and argon-plasma pulses.
Dermatol Ther
; 35(2): e15222, 2022 02.
Article
em En
| MEDLINE
| ID: mdl-34820982
Atmospheric-pressure, non-thermal plasma destroys microorganisms by directly reacting with hydrocarbon molecules in the cell wall and/or by damaging the cytoplasmic membrane, proteins, and DNA with charged particles and reactive species. The aim of our study was to evaluate the antibacterial and anticandidal effects of atmospheric-pressure, non-thermal, nitrogen- and argon-plasma pulses on various pathogen preparations. The resultant antibacterial and anticandidal effects were assessed by evaluating percent and log reduction values for pathogen colonies. Nitrogen-plasma pulses emitted at an energy of 1.5 J and argon-plasma pulses generated at 0.5 J elicited remarkable antibacterial effects on Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus (MRSA) and anticandidal effects on Candida albicans. Nitrogen-plasma pulses at a pulse count of five elicited remarkable antibacterial effects on Cutibacterium acnes at the energy settings of 1.75, 2.5, and 3 J, but not at 1 J. Meanwhile, argon-plasma pulses showed antibacterial effects on C. acnes at an energy of 0.5 and 0.65 J. Nitrogen- or argon-plasma pulses exert antibacterial and anticandidal effects on bacterial and fungal pathogens.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Staphylococcus aureus Resistente à Meticilina
Limite:
Humans
Idioma:
En
Revista:
Dermatol Ther
Assunto da revista:
DERMATOLOGIA
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
Coréia do Sul