Your browser doesn't support javascript.
loading
Engineering In-Plane Nickel Phosphide Heterointerfaces with Interfacial sp HP Hybridization for Highly Efficient and Durable Hydrogen Evolution at 2 A cm-2.
Zhou, Qian; Liao, Liling; Bian, Qihang; Yu, Fang; Li, Dongyang; Zeng, Jinsong; Zhang, Long; Wang, Hui; Tang, Dongsheng; Zhou, Haiqing; Ren, Zhifeng.
Afiliação
  • Zhou Q; Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha,
  • Liao L; Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha,
  • Bian Q; Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha,
  • Yu F; Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha,
  • Li D; Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha,
  • Zeng J; Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha,
  • Zhang L; Hunan Key Laboratory of Super Microstructure and Ultrafast Process, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha, 410083, China.
  • Wang H; Hunan Key Laboratory of Super Microstructure and Ultrafast Process, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha, 410083, China.
  • Tang D; Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha,
  • Zhou H; Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha,
  • Ren Z; Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, China.
Small ; 18(4): e2105642, 2022 Jan.
Article em En | MEDLINE | ID: mdl-34825490
ABSTRACT
The catalytic hydrogen-evolving activities of transition-metal phosphides are greatly related to the phosphorus content, but the physical origin of performance enhancement remains ambiguous, and tuning the catalytic activity of nickel phosphides (NiP2 /Ni5 P4 ) remains challenging due to unfavorable H* adsorption. Here, a strategy is introduced to integrate P-rich NiP2 and P-poor Ni5 P4 into in-plane heterostructures by anion substitution, in which P atoms at the in-plane interfaces perform as active sites to adsorb H* and thus facilitate the hydrogen evolution reaction (HER) process via modulating the electronic structure between NiP2 and Ni5 P4 . Consequently, the NiP2 /Ni5 P4 hybrid exhibits an outstanding hydrogen-evolving activity, requiring only 30 and 76 mV to afford 10 and 100 mA cm-2 in acid, respectively. It surpasses most of the earth-abundant electrocatalysts thus far, and is comparable to Pt catalysts (30/72 mV at 10/100 mA cm-2 ). Particularly, it can run smoothly at large current density and only requires 247 mV to reach 2000 mA cm-2 . Detailed theoretical calculations reveal that its exceptional activity stems from the moderate overlap of density states between P 2p and H 1s orbitals, thus optimizing the H*-adsorption strength. This work highlights a new avenue toward the fabrication of robust non-noble electrocatalysts by constructing in-plane heterojunctions.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2022 Tipo de documento: Article