Your browser doesn't support javascript.
loading
Diverse Krill Lipid Fractions Differentially Reduce LPS-Induced Inflammatory Markers in RAW264.7 Macrophages In Vitro.
Xie, Dan; He, Fangyuan; Wang, Xiaosan; Wang, Xingguo; Jin, Qingzhe; Jin, Jun.
Afiliação
  • Xie D; College of Biology and Food Engineering, Anhui Polytechnic University, Beijing Zhong Road, Wuhu 241000, China.
  • He F; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
  • Wang X; College of Biology and Food Engineering, Anhui Polytechnic University, Beijing Zhong Road, Wuhu 241000, China.
  • Wang X; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
  • Jin Q; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
  • Jin J; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
Foods ; 10(11)2021 Nov 22.
Article em En | MEDLINE | ID: mdl-34829168
ABSTRACT
Antarctic krill oil is an emerging marine lipid and expected to be a potential functional food due to its diverse nutrients, such as eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), phospholipids, astaxanthin and tocopherols. Although krill oil has been previously proved to have anti-inflammatory activity, there is little information about the relationship between its chemical compositions and anti-inflammatory activity. In this study, the RAW264.7 macrophages model was used to elucidate and compare the anti-inflammatory potential of different krill lipid fractions KLF-A, KLF-H and KLF-E, which have increasing phospholipids, EPA and DHA contents but decreasing astaxanthin and tocopherols levels. Results showed that all the krill lipid fractions alleviated the inflammatory reaction by inhibition of production of nitric oxide (NO), release of tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß and IL-6 and gene expression of proinflammatory mediators including TNF-α, IL-1ß, IL-6, cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). In addition, KLF-E with the highest phospholipids, EPA and DHA contents showed the strongest inhibition effect on the LPS-induced proinflammatory mediator release and their gene expressions. The results would be helpful to provide powerful insights into the underlying anti-inflammatory mechanism of krill lipid and guiding the production of krill oil products with tailor-made anti-inflammatory activity.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Foods Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Foods Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China