Your browser doesn't support javascript.
loading
META-DDIE: predicting drug-drug interaction events with few-shot learning.
Deng, Yifan; Qiu, Yang; Xu, Xinran; Liu, Shichao; Zhang, Zhongfei; Zhu, Shanfeng; Zhang, Wen.
Afiliação
  • Deng Y; School of Computer Science, Fudan University, Wuhan, Hubei 430070, China.
  • Qiu Y; College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
  • Xu X; College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
  • Liu S; College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
  • Zhang Z; Computer Science Department, Binghamton University, Wuhan, Hubei 430070, China.
  • Zhu S; Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Wuhan, Hubei 430070, China.
  • Zhang W; College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
Brief Bioinform ; 23(1)2022 01 17.
Article em En | MEDLINE | ID: mdl-34893793
Drug-drug interactions (DDIs) are one of the major concerns in pharmaceutical research, and a number of computational methods have been developed to predict whether two drugs interact or not. Recently, more attention has been paid to events caused by the DDIs, which is more useful for investigating the mechanism hidden behind the combined drug usage or adverse reactions. However, some rare events may only have few examples, hindering them from being precisely predicted. To address the above issues, we present a few-shot computational method named META-DDIE, which consists of a representation module and a comparing module, to predict DDI events. We collect drug chemical structures and DDIs from DrugBank, and categorize DDI events into hundreds of types using a standard pipeline. META-DDIE uses the structures of drugs as input and learns the interpretable representations of DDIs through the representation module. Then, the model uses the comparing module to predict whether two representations are similar, and finally predicts DDI events with few labeled examples. In the computational experiments, META-DDIE outperforms several baseline methods and especially enhances the predictive capability for rare events. Moreover, META-DDIE helps to identify the key factors that may cause DDI events and reveal the relationship among different events.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Preparações Farmacêuticas / Interações Medicamentosas Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Brief Bioinform Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Preparações Farmacêuticas / Interações Medicamentosas Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Brief Bioinform Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China