Your browser doesn't support javascript.
loading
Semi-automatic segmentation of whole-body images in longitudinal studies.
Grossiord, Eloïse; Risser, Laurent; Kanoun, Salim; Aziza, Richard; Chiron, Harold; Ysebaert, Loïc; Malgouyres, François; Ken, Soléakhéna.
Afiliação
  • Grossiord E; Institut de Mathématiques de Toulouse ; UMR5219; Université de Toulouse; CNRS UPS IMT F-31062 Toulouse Cedex 9, France.
  • Risser L; Institut Universitaire du Cancer Toulouse Oncopôle (IUCT-O) - Institut Claudius Regaud ; Département d'Ingénierie et de Physique Médicale, F-31059 Toulouse Cedex 9, France.
  • Kanoun S; Institut de Mathématiques de Toulouse ; UMR5219; Université de Toulouse; CNRS UPS IMT F-31062 Toulouse Cedex 9, France.
  • Aziza R; Institut Universitaire du Cancer Toulouse Oncopôle (IUCT-O) - Institut Claudius Regaud ; Département d'Imagerie Médicale, F-31059 Toulouse Cedex 9, France.
  • Chiron H; Institut Universitaire du Cancer Toulouse Oncopôle (IUCT-O) - Institut Claudius Regaud ; Département d'Imagerie Médicale, F-31059 Toulouse Cedex 9, France.
  • Ysebaert L; Institut Universitaire du Cancer Toulouse Oncopôle (IUCT-O) - Institut Claudius Regaud ; Département d'Imagerie Médicale, F-31059 Toulouse Cedex 9, France.
  • Malgouyres F; Institut Universitaire du Cancer Toulouse Oncopôle (IUCT-O) - Institut Claudius Regaud ; Département d'Imagerie Médicale, F-31059 Toulouse Cedex 9, France.
  • Ken S; Institut de Mathématiques de Toulouse ; UMR5219; Université de Toulouse; CNRS UPS IMT F-31062 Toulouse Cedex 9, France.
Biomed Phys Eng Express ; 7(1)2020 12 08.
Article em En | MEDLINE | ID: mdl-34983886
We propose a semi-automatic segmentation pipeline designed for longitudinal studies considering structures with large anatomical variability, where expert interactions are required for relevant segmentations. Our pipeline builds on the regularized Fast Marching (rFM) segmentation approach by Risseret al(2018). It consists in transporting baseline multi-label FM seeds on follow-up images, selecting the relevant ones and finally performing the rFM approach. It showed increased, robust and faster results compared to clinical manual segmentation. Our method was evaluated on 3D synthetic images and patients' whole-body MRI. It allowed a robust and flexible handling of organs longitudinal deformations while considerably reducing manual interventions.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Imagem Corporal / Imageamento por Ressonância Magnética Tipo de estudo: Guideline / Observational_studies Limite: Humans Idioma: En Revista: Biomed Phys Eng Express Ano de publicação: 2020 Tipo de documento: Article País de afiliação: França

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Imagem Corporal / Imageamento por Ressonância Magnética Tipo de estudo: Guideline / Observational_studies Limite: Humans Idioma: En Revista: Biomed Phys Eng Express Ano de publicação: 2020 Tipo de documento: Article País de afiliação: França