Your browser doesn't support javascript.
loading
KRT13 promotes stemness and drives metastasis in breast cancer through a plakoglobin/c-Myc signaling pathway.
Yin, Lijuan; Li, Qinlong; Mrdenovic, Stefan; Chu, Gina Chia-Yi; Wu, Boyang Jason; Bu, Hong; Duan, Peng; Kim, Jayoung; You, Sungyong; Lewis, Michael S; Liang, Gangning; Wang, Ruoxiang; Zhau, Haiyen E; Chung, Leland W K.
Afiliação
  • Yin L; Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
  • Li Q; Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Boulevard, Atrium 105, Los Angeles, CA, 90048, USA.
  • Mrdenovic S; Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Boulevard, Atrium 105, Los Angeles, CA, 90048, USA.
  • Chu GC; Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Boulevard, Atrium 105, Los Angeles, CA, 90048, USA.
  • Wu BJ; Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Boulevard, Atrium 105, Los Angeles, CA, 90048, USA.
  • Bu H; Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Boulevard, Atrium 105, Los Angeles, CA, 90048, USA.
  • Duan P; Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
  • Kim J; Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Boulevard, Atrium 105, Los Angeles, CA, 90048, USA.
  • You S; Division of Cancer Biology and Therapeutics, Departments of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
  • Lewis MS; Division of Cancer Biology and Therapeutics, Departments of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
  • Liang G; Department of Pathology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA.
  • Wang R; Department of Urology, University of Southern California Keck School of Medicine, Los Angeles, CA, USA.
  • Zhau HE; Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Boulevard, Atrium 105, Los Angeles, CA, 90048, USA. ruoxiang.wang@cshs.org.
  • Chung LWK; Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Boulevard, Atrium 105, Los Angeles, CA, 90048, USA.
Breast Cancer Res ; 24(1): 7, 2022 01 25.
Article em En | MEDLINE | ID: mdl-35078507
ABSTRACT

BACKGROUND:

Keratins (KRTs) are intermediate filament proteins that interact with multiple regulatory proteins to initiate signaling cascades. Keratin 13 (KRT13) plays an important role in breast cancer progression and metastasis. The objective of this study is to elucidate the mechanism by which KRT13 promotes breast cancer growth and metastasis.

METHODS:

The function and mechanisms of KRT13 in breast cancer progression and metastasis were assessed by overexpression and knockdown followed by examination of altered behaviors in breast cancer cells and in xenograft tumor formation in mouse mammary fat pad. Human breast cancer specimens were examined by immunohistochemistry and multiplexed quantum dot labeling analysis to correlate KRT13 expression to breast cancer progression and metastasis.

RESULTS:

KRT13-overexpressing MCF7 cells displayed increased proliferation, invasion, migration and in vivo tumor growth and metastasis to bone and lung. Conversely, KRT13 knockdown inhibited the aggressive behaviors of HCC1954 cells. At the molecular level, KRT13 directly interacted with plakoglobin (PG, γ-catenin) to form complexes with desmoplakin (DSP). This complex interfered with PG expression and nuclear translocation and abrogated PG-mediated suppression of c-Myc expression, while the KRT13/PG/c-Myc signaling pathway increased epithelial to mesenchymal transition and stem cell-like phenotype. KRT13 expression in 58 human breast cancer tissues was up-regulated especially at the invasive front and in metastatic specimens (12/18) (p < 0.05). KRT13 up-regulation in primary breast cancer was associated with decreased overall patient survival.

CONCLUSIONS:

This study reveals that KRT13 promotes breast cancer cell growth and metastasis via a plakoglobin/c-Myc pathway. Our findings reveal a potential novel pathway for therapeutic targeting of breast cancer progression and metastasis.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias da Mama Limite: Animals / Female / Humans Idioma: En Revista: Breast Cancer Res Assunto da revista: NEOPLASIAS Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias da Mama Limite: Animals / Female / Humans Idioma: En Revista: Breast Cancer Res Assunto da revista: NEOPLASIAS Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China