Your browser doesn't support javascript.
loading
Effects of tendon vibration and age on force reproduction task performed with wrist flexors.
Henry, Mélanie; Esrefoglu, Alp; Duchateau, Jacques; Baudry, Stéphane.
Afiliação
  • Henry M; Laboratory of Applied Biology, Research Unit in Applied Neurophysiology (LABNeuro), ULB-Neurosciences Institute (UNI), Faculty for Motor Sciences, Université Libre de Bruxelles (ULB), 808, Route de Lennik, CP 640, 1070, Brussels, Belgium.
  • Esrefoglu A; Laboratory of Applied Biology, Research Unit in Applied Neurophysiology (LABNeuro), ULB-Neurosciences Institute (UNI), Faculty for Motor Sciences, Université Libre de Bruxelles (ULB), 808, Route de Lennik, CP 640, 1070, Brussels, Belgium.
  • Duchateau J; Laboratory of Applied Biology, Research Unit in Applied Neurophysiology (LABNeuro), ULB-Neurosciences Institute (UNI), Faculty for Motor Sciences, Université Libre de Bruxelles (ULB), 808, Route de Lennik, CP 640, 1070, Brussels, Belgium.
  • Baudry S; Laboratory of Applied Biology, Research Unit in Applied Neurophysiology (LABNeuro), ULB-Neurosciences Institute (UNI), Faculty for Motor Sciences, Université Libre de Bruxelles (ULB), 808, Route de Lennik, CP 640, 1070, Brussels, Belgium. stephanebaudry@ulb.be.
Exp Brain Res ; 240(3): 941-951, 2022 Mar.
Article em En | MEDLINE | ID: mdl-35089392
ABSTRACT
The sense of force is suggested to rely in part on proprioceptive inputs when assessed with a force reproduction task. The age-related alterations in proprioceptive system could, therefore, alter the sense of force. This study investigated the effects of tendon vibration on a force reproduction task performed with the wrist flexors in 18 young (20-40 year) and 18 older adults (60-90 year). Participants matched a target force (5% or 20% of their maximal force) with visual feedback of the force produced (target phase), and reproduced the target force without visual feedback (reproduction phase) after a 5-s rest period with or without vibration. The force reproduction error was expressed as the ratio between the force produced during the reproduction and the target phases. For the trials with vibration, the error was expressed as the ratio between the force produced during the reproduction phase performed with and without vibration. Tactile acuity was assessed with a two-point discrimination test. The error was greater at 5% than at 20% contraction intensity (p < 0.001), and in older [56.5 (32.2)%; mean (SD)] than in young adults [33.5 (13.6)%] at 5% (p = 0.002) but not 20% target (p = 0.46). Tendon vibration had a greater effect at 5% than 20% contraction intensity, and in older [41.7 (32.4)%, p < 0.001] than young adults [20.0 (16.1)%]. Tactile acuity was lesser in older than young adults (p < 0.001). The results support the contribution of proprioception in the sense of force, and highlight a decrease in performance with ageing restricted to low-force contractions.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Vibração / Punho Limite: Adult / Aged / Humans Idioma: En Revista: Exp Brain Res Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Bélgica

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Vibração / Punho Limite: Adult / Aged / Humans Idioma: En Revista: Exp Brain Res Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Bélgica