Your browser doesn't support javascript.
loading
Characterisation of the spectrum and genetic dependence of collateral mutations induced by translesion DNA synthesis.
Póti, Ádám; Szikriszt, Bernadett; Gervai, Judit Zsuzsanna; Chen, Dan; Szüts, Dávid.
Afiliação
  • Póti Á; Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary.
  • Szikriszt B; Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary.
  • Gervai JZ; Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary.
  • Chen D; Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary.
  • Szüts D; Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary.
PLoS Genet ; 18(2): e1010051, 2022 02.
Article em En | MEDLINE | ID: mdl-35130276
ABSTRACT
Translesion DNA synthesis (TLS) is a fundamental damage bypass pathway that utilises specialised polymerases with relaxed template specificity to achieve replication through damaged DNA. Misinsertions by low fidelity TLS polymerases may introduce additional mutations on undamaged DNA near the original lesion site, which we termed collateral mutations. In this study, we used whole genome sequencing datasets of chicken DT40 and several human cell lines to obtain evidence for collateral mutagenesis in higher eukaryotes. We found that cisplatin and UVC radiation frequently induce close mutation pairs within 25 base pairs that consist of an adduct-associated primary and a downstream collateral mutation, and genetically linked their formation to TLS activity involving PCNA ubiquitylation and polymerase κ. PCNA ubiquitylation was also indispensable for close mutation pairs observed amongst spontaneously arising base substitutions in cell lines with disrupted homologous recombination. Collateral mutation pairs were also found in melanoma genomes with evidence of UV exposure. We showed that collateral mutations frequently copy the upstream base, and extracted a base substitution signature that describes collateral mutagenesis in the presented dataset regardless of the primary mutagenic process. Using this mutation signature, we showed that collateral mutagenesis creates approximately 10-20% of non-paired substitutions as well, underscoring the importance of the process.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: DNA Polimerase Dirigida por DNA / Replicação do DNA Idioma: En Revista: PLoS Genet Assunto da revista: GENETICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Hungria

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: DNA Polimerase Dirigida por DNA / Replicação do DNA Idioma: En Revista: PLoS Genet Assunto da revista: GENETICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Hungria