Your browser doesn't support javascript.
loading
"Spine Surgery" of Perylene Diimides with Covalent B-N Bonds toward Electron-Deficient BN-Embedded Polycyclic Aromatic Hydrocarbons.
Zhao, Kexiang; Yao, Ze-Fan; Wang, Zi-Yuan; Zeng, Jing-Cai; Ding, Li; Xiong, Miao; Wang, Jie-Yu; Pei, Jian.
Afiliação
  • Zhao K; Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
  • Yao ZF; Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
  • Wang ZY; Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
  • Zeng JC; Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
  • Ding L; Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
  • Xiong M; Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
  • Wang JY; Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
  • Pei J; Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
J Am Chem Soc ; 144(7): 3091-3098, 2022 Feb 23.
Article em En | MEDLINE | ID: mdl-35138831
BN-embedded polycyclic aromatic hydrocarbons (PAHs) with unique optoelectronic properties are underdeveloped relative to their carbonaceous counterparts due to the lack of suitable and facile synthetic methods. Moreover, the dearth of electron-deficient BN-embedded PAHs further hinders their application in organic electronics. Here we present the first facile synthesis of novel perylene diimide derivatives (B2N2-PDIs) featuring n-type B-N covalent bonds. The structures of these compounds are fully confirmed through the detailed characterizations with NMR, MS, and X-ray crystallography. Further investigation shows that the introduction of BN units significantly modifies the photophysical and electronic properties of these B2N2-PDIs and is further understood with the aid of theoretical calculations. Compared with the parent perylene diimides (PDIs), B2N2-PDIs exhibit deeper highest occupied molecular orbital energy levels, new absorption peaks in the high-energy region, hypsochromic shift of absorption and emission maxima, and decrement of photoluminescent quantum yields. Single-crystal field-effect transistors based on B2N2-PDIs showcase an electron mobility up to 0.35 cm2 V-1 s-1, demonstrating their potential application in optoelectronic materials.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Am Chem Soc Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Am Chem Soc Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China