Your browser doesn't support javascript.
loading
Tethering Piezo channels to the actin cytoskeleton for mechanogating via the cadherin-ß-catenin mechanotransduction complex.
Wang, Jing; Jiang, Jinghui; Yang, Xuzhong; Zhou, Gewei; Wang, Li; Xiao, Bailong.
Afiliação
  • Wang J; State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, IDG/McGovern Institute for Brain Research, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Joint Graduate Program of Peking-Ts
  • Jiang J; State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, IDG/McGovern Institute for Brain Research, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
  • Yang X; State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, IDG/McGovern Institute for Brain Research, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
  • Zhou G; State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, IDG/McGovern Institute for Brain Research, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
  • Wang L; State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, IDG/McGovern Institute for Brain Research, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
  • Xiao B; State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, IDG/McGovern Institute for Brain Research, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China. Electronic address: xbailong@mail.t
Cell Rep ; 38(6): 110342, 2022 02 08.
Article em En | MEDLINE | ID: mdl-35139384
ABSTRACT
The mechanically activated Piezo channel plays a versatile role in conferring mechanosensitivity to various cell types. However, how it incorporates its intrinsic mechanosensitivity and cellular components to effectively sense long-range mechanical perturbation across a cell remains elusive. Here we show that Piezo channels are biochemically and functionally tethered to the actin cytoskeleton via the cadherin-ß-catenin mechanotransduction complex, whose perturbation significantly impairs Piezo-mediated responses. Mechanistically, the adhesive extracellular domain of E-cadherin interacts with the cap domain of Piezo1, which controls the transmembrane gate, while its cytosolic tail might interact with the cytosolic domains of Piezo1, which are in close proximity to its intracellular gates, allowing a direct focus of adhesion-cytoskeleton-transmitted force for gating. Specific disruption of the intermolecular interactions prevents cytoskeleton-dependent gating of Piezo1. Thus, we propose a force-from-filament model to complement the previously suggested force-from-lipids model for mechanogating of Piezo channels, enabling them to serve as versatile and tunable mechanotransducers.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Citoesqueleto / Citoesqueleto de Actina / Mecanotransdução Celular / Beta Catenina / Canais Iônicos Limite: Animals / Humans Idioma: En Revista: Cell Rep Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Citoesqueleto / Citoesqueleto de Actina / Mecanotransdução Celular / Beta Catenina / Canais Iônicos Limite: Animals / Humans Idioma: En Revista: Cell Rep Ano de publicação: 2022 Tipo de documento: Article