Your browser doesn't support javascript.
loading
Chronic partial TrkB activation reduces seizures and mortality in a mouse model of Dravet syndrome.
Gu, Feng; Parada, Isabel; Yang, Tao; Longo, Frank M; Prince, David A.
Afiliação
  • Gu F; Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305-5122.
  • Parada I; Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305-5122.
  • Yang T; Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305-5122.
  • Longo FM; Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305-5122.
  • Prince DA; Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305-5122 daprince@stanford.edu.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Article em En | MEDLINE | ID: mdl-35165147
ABSTRACT
Dravet syndrome (DS) is one of the most severe childhood epilepsies, characterized by intractable seizures and comorbidities including cognitive and social dysfunction and high premature mortality. DS is mainly caused by loss-of-function mutations in the Scn1a gene encoding Nav1.1 that is predominantly expressed in inhibitory parvalbumin-containing (PV) interneurons. Decreased Nav1.1 impairs PV cell function, contributing to DS phenotypes. Effective pharmacological therapy that targets defective PV interneurons is not available. The known role of brain-derived neurotrophic factor (BDNF) in the development and maintenance of interneurons, together with our previous results showing improved PV interneuronal function and antiepileptogenic effects of a TrkB receptor agonist in a posttraumatic epilepsy model, led to the hypothesis that early treatment with a TrkB receptor agonist might prevent or reduce seizure activity in DS mice. To test this hypothesis, we treated DS mice with LM22A-4 (LM), a partial agonist at the BDNF TrkB receptor, for 7 d starting at postnatal day 13 (P13), before the onset of spontaneous seizures. Results from immunohistochemistry, Western blot, whole-cell patch-clamp recording, and in vivo seizure monitoring showed that LM treatment increased the number of perisomatic PV interneuronal synapses around cortical pyramidal cells in layer V, upregulated Nav1.1 in PV neurons, increased inhibitory synaptic transmission, and decreased seizures and the mortality rate in DS mice. The results suggest that early treatment with a partial TrkB receptor agonist may be a promising therapeutic approach to enhance PV interneuron function and reduce epileptogenesis and premature death in DS.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Convulsões / Benzamidas / Epilepsias Mioclônicas / Receptor trkB Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Convulsões / Benzamidas / Epilepsias Mioclônicas / Receptor trkB Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2022 Tipo de documento: Article